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Motivation

The mean, the whole mean and nothing but the mean

The top 10 reason to become a statistician:

Deviation is considered normal

—_

We feel complete and sufficient

Statistician do it discretely and continuously

We are right 95% of the time

We can legally comment on someone’s posterior distribution
We may not be normal but we are transformable

We never have to say we are certain

We are honestly significant different
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Beyond the mean

What the regression curve does Is give a grand summary
for the averages of the distributions corresponding to the
set of X's. We could go further and compute several
different regression curves corresponding to the various
percentage points of the distributions and thus get a more

complete picture of the set.

Ordinarily this is not done, and so regression often gives a
rather incomplete picture. Just as the mean gives an
incomplete picture of a single distribution, so the
regression curve gives a correspondingly incomplete

picture for a set of distributions.

Mostseller and Tukey (1977)
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Regression models

Let us consider data (y,-, z,) for a continuous response variable y and

a set of covariates Z.

The typical regression model is:

Yi =1 t €

where 7); is a regression predictor formed in terms of the covariates z;.

NOTE: we will restrict to the case of linear effects:
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Regression models

Minimal assumptions on the error term:

- E(¢)) =0
- Var(e;) = o?
- Cov(€i,€) =0

Typical assumptions on the error term:

- € ~ N(0,0?)

- independence of € and ¢;
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Regression models

From the assumption on the error term, we have the following

properties of the response distribution:
- the predictor n; determines the expectation of the response:

E(vilzi) = m,
- the response is homoschedastic

var(yi|z;) = o*

- the quantile curves are parallel

- in case of normal erros:

Qlyilz) = ni + zro



The case of normal errors
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The case of normal errors

# a normal error (classic) model

set.seed(17)

n <- 1000

df chi <- 2; beta® <- 1; betal <- 2

x <- rchisq(n, df_chi)

error <- rnorm(n)

y <- beta® + betal * x + error

# organize data into a dataframe

df <- data.frame(x, vy)

# scatter plot

library(ggplot2); library(ggthemes)

gl <- ggplot(data = df, aes(x, y)) +
geom_point() + theme_wsj()
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The case of normal errors
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The case of normal errors

1m_coefs <- coef(lm(y ~ x, data = df))

g2 <- gl +
geom_abline(intercept = lm_coefs[1],
slope = lm_coefs[2],
colour = "red”,
linetype = "dashed”, size = 2) +
stat_quantile(quantiles = ¢(0.25, 0.5, 0.9),

colour = "blue”)
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The case of normal errors
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The case of normal errors

g3 <- g2 +
geom_abline(intercept = 1m_coefs[1] +
qnorm(0.25) =
summary(lm(y ~ x, data = df))$sigma,
slope = lm_coefs[2],
colour = "green”,
linetype = "dashed”, size = 2) +
geom_abline(intercept = lm_coefs[1] + gnorm(0.9) =
summary(lm(y ~ x, data = df))$sigma,,
slope = lm_coefs[2],
colour = "brown”,

linetype = "dashed”, size = 2)
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The case of normal errors
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The case of heterogeneous errors
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The case of homogeneous (not normal) errors
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The case of uniform errors

# a uniform error model

set.seed(17)

n <- 1000

df _chi <- 2; beta® <- 1; betal <- 2

X <- rchisq(n, df_chi)

error <- runif(n, 0, 10)

y <- beta® + betal * x + error

# organize data 1nto a dataframe

df <- data.frame(x, vy)

# scatter plot

library(ggplot2); library(ggthemes)

gl <- ggplot(data = df, aes(x, y)) +
geom_point() + theme_wsj()
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The case of uniform errors
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The case of uniform errors

1m_coefs <- coef(lm(y ~ x, data = df))

g2 <- gl +
geom_abline(intercept = lm_coefs[1],
slope = lm_coefs[2],
colour = "red”,
linetype = "dashed”, size = 2) +
stat_quantile(quantiles = ¢(0.25, 0.5, 0.9),

colour = "blue”)
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The case of uniform errors
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The case of uniform errors

g3 <- g2 +
geom_abline(intercept = 1m_coefs[1] +
qnorm(0.25) =
summary(lm(y ~ x, data = df))$sigma,
slope = lm_coefs[2],
colour = "green”,
linetype = "dashed”, size = 2) +
geom_abline(intercept = lm_coefs[1] +
qnorm(0.9) =
summary(lm(y ~ x, data = df))$sigma,
slope = lm_coefs[2],
colour = "brown”,

linetype = "dashed”, size = 2)
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The case of uniform errors
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The case of homogeneous (not normal) errors
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The case of log-normal errors

# a lognormal error model

set.seed(17)

n <- 1000

df chi <- 2; beta® <- 1; betal <- 2

x <- rchisq(n, df_chi)

error <- rlnorm(n, 0, 1.25)

y <- beta® + betal * x + error

# organize data into a dataframe

df <- data.frame(x, vy)

# scatter plot

library(ggplot2); library(ggthemes)

gl <- ggplot(data = df, aes(x, y)) +
geom_point() + theme_wsj()
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The case of log-normal errors
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The case of log-normal errors

1m_coefs <- coef(lm(y ~ x, data = df))

g2 <- gl +
geom_abline(intercept = lm_coefs[1],
slope = lm_coefs[2],
colour = "red”,
linetype = "dashed”, size = 2) +
stat_quantile(quantiles = ¢(0.25, 0.5, 0.9),

colour = "blue”)
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The case of log-normal errors
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The case of log-normal errors

g3 <- g2 +
geom_abline(intercept = 1m_coefs[1] +
qnorm(0.25) =
summary(lm(y ~ x, data = df))$sigma,
slope = lm_coefs[2],
colour = "green”,
linetype = "dashed”, size = 2) +
geom_abline(intercept = lm_coefs[1] +
qnorm(0.9) =
summary(lm(y ~ x, data = df))$sigma,
slope = lm_coefs[2],
colour = "brown”,

linetype = "dashed”, size = 2)
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The case of log-normal errors
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A more complex world

We live in a paradoxical world, where the only true safety,
true though limited, comes from admitting both our
uncertainty and the incompleteness with which we are able

to meet it.

J. W. Tukey (1997)

35
A more complex world




A more complex world

Some possible approaches

- regression models for location, scale and shape
- quantile regression

- expectile regression



Regression models for location, scale and shape

- There are still assumptions on a specific error distribution but
covariates exert effect not only on the mean

- A distribution for the response is specified, where (potentially)
all parameters are related to predictors

- A simple example? Regression for mean and variance of a

normal distribution where:
yi = M + exp(n,€;)
with:
€ ~ N(0,1)
In such a model, we have:

- E(yilzi) = ny
- Var(yilz)) = exp(n;)?

39

Quantile regression

- no parametric assumptions for the error (and hence response)
distribution

- estimation of separate models for different asymmetries
T € [0,1]

- insted of E(¢; = 0), we have P(€;; < 0) = 7, i.e. the
T-quantile of the error term is 0

- the separate models are interpretable in terms of regression
models for the quantiles of the response

- a dense set of quantiles completely characterizes the

conditional distribution of the response

40



Expectile regression

- expectiles are a computationally alternative to quantiles
- how do you interpret an expectile?

- please, be patient until this afternoon

41

The (un)official history
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Quantile regression timeline

A (not so short) history

Jesuit Roger
Joseph Boscovich

Problem of ellipticity of the earth

Being given a certain number of degrees, find
the correction that must be made to each of
them . supposing these three conditions are
complied with: the first, that their differences
shall be proportional to the differences
between the versed sines of twice their
latitudes; the second, that the sum of the
positive corrections shall be equal to the sum
of the negative ones: the third, that the sum
of all the corrections, positive as well as
negative, shall be the least possible, for the
case where the first two conditions will be
fulfilled.

Roger Koenker
& Gig Basset

Econometrica

17950

Regression quantiles 1978 O

Adrien Marie
Legendre

Nouvelles Méthods pour la
détermination des orbites des
coméetes

Appendix:
Sur la méthode des moindres
quarrés

George Bernard
Dantzig
The simplex algorithm

Linear programming and extension
Princeton University Press (1963)

Some (un)official statistics

43
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Web of Science Thomson Citation Index
# papers "quantile regression”

1999 - 2003

2009 - 2013

2014 - June 2016

Quap,:
Rev.ran tile

&

Economit

Applications
o“junn!ﬂe
Regression
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Statisticd

N A

with Quanglc
Functions

Quantile regression software

- R:

- quantreg package (Koenker)

- 24 additional packages (ALDqgr, bayesQR, BSquare, cdfquantreg,
cmprskQR, cgrReg, expectreg, factorQR, GLDreg, hqreg, lgr,
modQR, OutlierDC, plagr, QICD, grcm, grjoint, grLMM, grNLMM,
grnn, quantregForest, quantregGrowth, quantreg.nonpar, rqPen)

- SAS: QUANTREG procedure
- Stata: greg, sqreg, igreg

and, recently, also:

- EViews7
- XL-Stat

48



Description of the 25 available R packages (1 of 3)

ALDqr Quantile Regression Using Asymmetric Laplace
Distribution
bayesQR Bayesian quantile regression
BSquare Bayesian Simultaneous Quantile Regression

cdfquantreg  Quantile Regression for Random Variables on the
Unit Interval
cmprskQR Analysis of Competing Risks Using Quantile
Regressions
cqrReg Quantile, Composite Quantile Regression and
Regularized Versions
expectreg Expectile and Quantile Regression

factorQR Bayesian quantile regression factor models

49

Description of the 25 available R packages (2 of 3)

GLDreg Fit GLD Regression Model and GLD Quantile
Regression Model to Empirical Data
hqreg Regularization Paths for Lasso or Elastic-Net

Penalized Huber Loss Regression and Quantile

Regression
lqr Robust Linear Quantile Regression
modQR Multiple-Output Directional Quantile Regression
OutlierDC Outlier Detection using quantile regression for

Censored Data

plagr Partially Linear Additive Quantile Regression

QICD Estimate the Coefficients for Non-Convex Penalized
Quantile Regression Model by using QICD Algorithm

grcm Quantile Regression Coefficients Modeling
50




Description of the 25 available R packages (3 of 3)

qrjoint
qrLMm

grNLMM
grnn
quantreg
quantregForest
quantregGrowth

quantreg.nonpar

rqPen

Joint Estimation in Linear Quantile Regression
Quantile Regression for Linear Mixed-Effects
Models

Quantile Regression for Nonlinear Mixed-Effects
Models

Quantile Regression Neural Network

Quantile Regression

Quantile Regression Forests

Growth Charts via Regression Quantiles

Nonparametric Series Quantile Regression

Penalized Quantile Regression
51

User guide
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- A basic introduction - see external presentation
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An useful property
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Equivariance

Equivariance properties
Ability to use the same transformation rules when the data on the

model are subject to a transformation

Transformation of variable scale is very common:

- to aid interpretation

- to attain a better model fit

Buckinsky (1998) proposed to exploit the equivariance property to speed up

the estimation process by reducing the number of simplex iterations

55
Equivariance

- scale equivariance
- shift or regression equivariance
- equivariance to repametrization of design

- equivariance to monotone transformations

Qo [h(y)Ix] = b [Bo(®)] + h [B,(8)] x

where h(.) is a non decreasing function in f



Linear Equivariance

Linear equivariance
For any linear transformation of the response variable, both the

conditional mean and the conditional quantiles can be exactly

transformed
- conditional mean
E(a + by|x) = a + bE(y|x)

- conditional quantiles

- ifb > 0:
Qp(a + by|x) = a + bQg(y|x)

- ifb<O:
Qg(a + by|x) = a + bQ,_p(y|x)

57

Monotone transformations (1/2)

- log-transformation is a typical nonlinear transformation, used:

- to address the right-skewness of a distribution

- to model a covariate’s effect in relative terms (e.g. percentage
change)
- It Is not possible to obtain the conditional mean of the

response in absolute terms starting from the conditional mean

on the log-scale
E [log(y)[x] # log(E [y|x])

E [yilxi] # LI

It would be a mistake to use the log(y) results to make conclusions about

the distribution of Y (though this is a widely used practice)
58



Monotone transformations (2/2)

Monotone transformation
Transformation that preverses order

- giveny <y then h(y) < h(y')

In general:
Elh(y)[x] 7 h(E [y|x])
while:
Qo [h(y)[x] = h(Qg [y[x])

this property follows immediately from the monotone equivariance property

of univariate quantiles

59

A note on inference

60



Main approaches to inference in QR

- Small sample theory
(Koenker and Basset, 1978)

“The practical of this theory would entail a host of hazardous assumptions

and an exhausting computational effort” (Koenker, 2005)

- Asymptotic theory

(Koenker and Basset, 1978, 1982a,b)

Rank-based theory

(Gutenbrunner and Jureckova, 1992) (Gutenbrunner, 1993)

Resampling methods
(Parzen, 1994) (He and Hu, 2002) (Kocherginsky, 2003; Kocherginsky , 2005)

61
Main approaches to inference in QR

- Small sample theory
(Koenker and Basset, 1978)

“The practical of this theory would entail a host of hazardous assumptions

and an exhausting computational effort” (Koenker, 2005)
(Koenker and Basset, 1978, 1982a,b)
Rank-based theory

(Gutenbrunner and Jureckova, 1992) (Gutenbrunner, 1993)

(Parzen, 1994) (He and Hu, 2002) (Kocherginsky, 2003; Kocherginsky, 2005)



Asymptotic theory

A

Qo (§]%) = Bo(6) + 51 (0)x

“under mild regularity conditions”

Asymptotic distribution of QR estimator:

SE(B (6)) |

SE(5 (#)) depends on the error distribution (i.e. the error distribution

affects the variance-covariance matrix of the QR estimator)

- standard errors are simpler and easier to describe under the i.i.d.

model

- itis quite complex to deal with the ni.i.d. case, as the errors no longer

have a common distribution 63

The bootstrap procedure

The bootstrap procedure is usally preferable to the asymptotic for
two reasons:

- when the assumptions for the asymptotic procedure do not hold

- even If the required assumptions are satisfied, the solutions for
the standard errors of the construscted and skewness shifts, are
complicated to compute

The boostrap procedure offers the flexibility to obtain the standard
error and confidence interval for any estimates and combinations of
estimates



A note on robustness

65

A note on robustness

- QR estimates are not sensitive to outliers in Y: if we modify the
value of the response variable for a data point lying above (or
below) the fitted QR lines, without changing the sign of the
corresponding sign

- QR estimator can be very sensitive to outliers in the explanatory
variables (He et al, 1990)

- Several proposals in the literature attempt to attain a more
robust for of QR: (Rousseauw and Hubert, 1999), Giloni et al.
(2006), and more recently Neykov (2012)
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Estimation: technical details

Estimation: technical details

Conditional mean and conditional

quantiles

67

68



On optimal criteria

- QR extends regression analysis to the study of the whole
conditional distribution of the response

- QR is to classical regression what quantiles are to mean in

terms of describing locations of a distribution

Unconditioanl mean and median (nothing of new)
Let Y a generic random variable:

- Mean (and its objective function): p = argmin,E(Y — ¢)’

- Median (and its objective function): Me = argmin_E|Y — |

with 2 and Me we denote the two sample estimators

69
On optimal criteria

Quantiles as particular locations of the distribution
qe = argmin E[pa(Y — ¢)]
C

where pg(.) denotes the following loss function:

It is an asymmetric absolute loss function: a weighted sum of
absolute deviations, where a (1 — ) weight is assigned to the

negative deviations and a weight @ is used for the positive deviations



On optimal criteria

Objective function
8- — quadratic

asymmetric V-shaped(0 = 0.25)

.-+ symmetric V-shaped(6 = 0.5)

- =+ asymmetric V-shaped(6 = 0.75)

Price

71

On optimal criteria

- In case of a discrete random variable Y with probability distribution
fly) = P(Y =y), we have:

qe = argmin E[pg (Y — ¢)]

= arginin (1—0) Z ly — clfly) + 92 v — clf(y)

y<c y>c

- In case of a continuous random variable Y with probability density function
fly) = P(Y =y), we have:

4o = argmin Elpo(Y — c)]
c +0o0o
= argcmin (1—0) / ly — c|f(y)d(y) + 6 / ly — c|f(y)d(y)

G, for @ € [O, 1], denotes the sample estimator for the conditional quantile

for @ = 0.5 we obtain the median solution 2



Solution for gy—y 5: the case of the median

Assuming, without loss of generality, that Y is a continuous random variable,

the expected value of the absolute sum of deviations can be formulated as:

v —d = [ Iy=clw)

YER
_ / ly — clf(y)dy + / |y — clfly)dy
_ /(c—y)f(y)dy+ /(y— o)f(y)dy

Since the absolute value is a convex function, differentiating E|Y — c| with
respect to ¢ and setting the partial derivatives to zero will lead the solution
for the minimum:

0 —Ely—c|=0
dc N

73

Solution for gyp—y 5: the case of the median

Then, applying the derivative and integrating per part:

+ [ o=+

y<c

+oo
)|+ [ 5b— e =o

y>c

(c —=)fly)

(v —ofly

Taking into account that f(—oo) = f(+00) = 0 for a well-defined probability
density function, the integrand restricts iny = ¢
/ )

(c = y)f( /f dy ¢ + 4 (v — o)f

N / y<c / y>cC
=Ovvheny C —Ovvheny c

Our interestisiny = ¢ (E|Y - ¢ | is minimized)
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Solution for gy—y 5: the case of the median

Therefore, we have:

[y + [ stay = o

y<c y>c

namely:
Fle) = = Fo)] =0
and thus:

:
2F(c) —1=0 = F(c):E —> = Me

75

Solution for the generic gg

The solution does not change by multiplying the two components of

F|Y — c| by a costant 6 and (1 — ), respectively:

c +0oo
gwyc)}%{me) [v-dwa+e [ ny(y)dy}

— 0 C

Repeating the above argument, we easily obtain:

= Elpo(y — )] = (1 — 9)F(c) — 61 — F(c)) = 0
and then gg as the solution of the minimization problem:
F(c) —0F(c) =0+ 0F(c) =0 = F(c) =0 = c=qy

76



Technical details

Technical details

Conditional mean and conditional

quantiles

77
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Conditional mean and conditional quantiles

- by replacing the sorting with optimization, the above line of
reasoning generalizes easily to the regression setting.
- denoting with Y the response variable and with X the set of

predictor variables

Estimation of the conditional mean function p(x;, ) = E[Y|X = x]]

f(xi, 8) = argprbﬂiﬂ E[Y — pu(xi, B)]°

Estimation of the conditional quantile function

qv(6,X) = argmin E[pg(Y — Qy(6,X))]
Qv (6,X)

79

Conditional mean and conditional quantiles: the linear case

- When p(x;, 8) = x;' 3, we have:

B = argmin ]y — x B))°
g

- Similarly, in case of linear quantile functions:
B(0) = argmin E[pe (Y — XB)]

the (6)-notation denotes that the parameters and the corresponding

estimators are for a specific quantile 6
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Geometrical interpretation: mean vs median
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Geometrical interpretation: gy »5 VS Gg 75
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Technical details

Technical details

The QR problem through linear

programming

83
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A very short introduction to linear programming

Linear programming is an extremely flexible tool widely used in

different application fields

Linear programming is a subset of mathematical programming
facing the efficient allocation of limited resources to known
activities

The allocation aims to minimize a cost or maximize a profit

85

A very short introduction to linear programming

- The variables:

whose values are to be decided are referred to as decisional variables

- The aim of a linear programming problem is to find a vector x* &€ R:_ minimizing (or

maximizing) the value of a given linear function

- The vector x* is detected among all vectors x € R:_ that satisfy a given system of linear
equations and inequalities

- The role of linearity is twofold: 1) the objective function (the quality of the plan) is measured
through a linear function of the considered quantities; 2) feasible plans are restricted by linear
constraints (inequalities)

- The linearity of some models is determined by the typical properties of the problem

- Some nonlinear problems (as in the case of QR) can be linearized by a proper use of
mathematical transformations

- The representation of a problem in terms of linear programming ensures that efficient

procedures are available for computing the solutions

86



Linear programming requirements (1/3)

- The n decision variables are non-negative:

X,‘ZO | =1 n.

g e e ey

In case of variables unrestricted in sign, a simple trick can be exploited:

x= [T —[=«*
W" >0
[—x" >0,

where [x]T denotes the non-negative part of x
We have:
- if [T >0, then [-x]T =0andx = [x]T >0
- for [-x]T > 0,then []T = 0andx = —[—x]T <0

- if x]T = [-x]T =0, thenx =0

Linear programming requirements (2/3)

- the criterion for choosing the optimal values of the decision
variables (the objective function) is a linear function of the

same variables:

n
z = Z CiX; — CX.
=1

The conversion from a minimization to a maximization problem is trivial: maximize

Zis equivalent to minimize —z



Linear programming requirements (3/3)

- the m constraints regulating the process can be expressed as
linear equations and/or linear inequalities written in terms of

the decision variables

VA
=

aXq +...+ax + ...+ a,x,

'V

89

Some technical tricks for expressing constraints (1/3)

It is easy to convert constraints from one form to another

- For example, an inequality constraint:

axi1+...+ax;+ ...+ ax, <b.

can be converted to a greater than or equal constraints simply by

multiplying it by —1

90



Some technical tricks for expressing constraints (1/3)

- An inequality constraint can be converted to an equality constraint by

adding a non-negative variable (slack variable):

ax1+...+axi+...+ax, +w=>b, w=>0.

91

Some technical tricks for expressing constraints (1/3)

- An equality constraint:

CEPR] i oo o ol GG 0 o oo o @i = 10

can be converted to an inequality form through the introduction of

two inequality constraints:

a1Xy + ...+ aiX; + ...+ ApXy
axi+...+axi+...+a,x, = b.

IA
o
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A generic linear programming problem

Problem with n decision variables and m constraints

minimize  c¢X
subjectto Ax < b
X > 0.

C[,] contains the costs for the n decision variables
Almxn @and by, contain the coefficients corresponding to the m

constraints

The standard form poses the inequalities as a less than or equal form and requires the
non-negativity for the decision variables

The equational form (useful for the simplex algorithm) is obtained through the introduction of
“slack” variables.

In this last form, the vector x contains both the decision variables and the slack variables
93

Geometric interpretation

A linear equation corresponds to a hyperplane

An inequality divides the n-dimensional space into two half-spaces, one in which the inequality
is satisfied and the other in which it is not

The constraints x > 0 restricts x to ]Rq_, that is the positive quadrant in n—-dimensional space:
in R? it is a quarter of the plane, in R? it is an eighth of the space, and so on

The constraints Ax < b produce m additional halp-spaces

The feasible set consists of the intersection of the above mentioned m + n half-spaces: n
corresponding to the decision variables and m to the constraints

The cost function cx produces a family of parallel planes: the place cx = constant corresponds
to the plane whose cost is equal to constant

When constant varies, the plane sweeps out the n-dimensional space

The optimal solution x™ is the Rr_’i_ point, that is the n-dimensional vector, that ensures the
lowest cost lying in the feasible set
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Geometric interpretation

- The feasible set can be empty, unbounded or bounded

- A solution x is feasible if it satisfies all the constraints

- The solution x is optimal (x*) when the objective function is
minimal

- The optimal vector x* is the feasible set whose associated cost
IS minimal

- A problem that has no feasible solution is called infeasible

- A problem with arbitrarily larger objective values is unbounded

95
Dual formulation

- Associated with every linear program is its dual formulation

- “Duality theory is the most important theoretical result about

linear programs” (Matousek e Gardner, 2007)

- The dual problem formulation uses the same A e b but reverses
the point of view: the cost vector ¢ and the constraint vector b
are indeed switched to the dual profit vector b and to the dual

constraint vector b

- The dual unknown (decision variables), y, is now a vector with m

components

- The n constraints are represented by yA > ¢



Dual formulation

Dual formulation for the linear programming problem
maximize by
subjectto yA > ¢
y > 0.

- Linear programs come then in primal/dual pairs

- Each feasible solution for one of these two linear programs

gives a bound on the optimal objective value for the other

- The dual formulation is sometime easier to solve
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Primal problem and dual problem

- weak duality theorem: the dual problem provides upper bounds

for the primal problem
cx < by;

- strong duality theorem: if the primal problem has an optimal

solution, then the dual also has an optimal solution

*

cx = by
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Methods for solving the LP problem

- The simplex algorithm (Dantzig, 1947) is the most famous method for solving
a LP problem: it is an iterative algorithm, starting from a solution that
satisfies the constraints and the non-negativities posed by the decision
variables

- It looks for a new and better solution, that is a solution characterized by a
lower (primal) or higher (dual) objective function value: the process iterates

until a solution that cannot be further improved is reached

- The planes corresponding to the cost function to be minimized in the primal
formulation (the profit function in the dual formulation) move up (down)

until they intersect the feasible set
- The first contact must occur along the boundary

- The simplex algorithm essentially consists of movements along the edges of
the feasible set: starting from an initial solution, the procedure goes from
corner to corner of the feasible set until it finds the corner with the lowest
(highest) associate cost (profit) 99

Methods for solving the LP problem

- Koenker e D'Orey (1987) introduced a variant of the efficient version of the
simplex algorithm, proposed by Barrodale e Roberts (1974), to compute

conditional quantiles
- The simplex algorithm is the default option in most of the QR software

- A completely different method approaches the solution from the interior of
the feasible set rather than on its boundary (Karmakar, 1984)

- Interior-point methods have been shown to be competitive in case of very

large problems

- Portnoy e Koenker (1997) proposed the use of interior-point methods for QR

showing their efficiency in case of datasets with a large number of units

- The heuristic approach known as finite smoothing algorithm (Chen 2004,
2007) is faster and more accurate for approximating the original problem with

respect to interior-point method in presence of a large number of covariates
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The LP formulation of the QR problem

L, regression, median regression, is a natural extension of the
sample median when the response is conditioned on the

covariates

- The LP formulation for the conditional median is shown first for
the simple regression model and then for the multiple

regression model
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The LP formulation of the QR problem

L, criterion for the two-variables problem

n
min E |Bo + Bixi — vil.
5075 —

=

1

Although this cost function is not linear, a simple trick allows us to make it linear, at the price of

introducing extra variables:
« . o n
minimize 2[21 ej
subject to e > Bo + Bixi — Vi i=1,...,n

ei > —(Bo + Bixi — vi) i=k4+1,...,0.

Each e; is an auxiliary variable standing for the error at the i-th point. The constraints guarantees that:

ej > max{Bo + Bixi — yi, —(Bo + Bxi — vi)} = |Bo + Bixi — vil.

- In an optimal solution, each of these inequalities has to be satisfied with equality; otherwise, we could
decrease the corresponding e;: the optimal solution thus yields a line minimizing the initial problem
(without the additional variables)
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- Hence, to solve the L1 problem, it suffices to solve the equivalent LP problem



The LP formulation of the QR problem

Manufacturer = Ford

Price

100 150
Horsepower

Horsepower 63 127 96 105 115 145 140 190

Price 74 101 113 159 140 199 202 209
5 B, = —0.60
| B =03 103

The LP formulation of the QR problem

The L, regression problem is solved by finding the optimal solution to

the following LP problem:

N Zwo
minimize . ej
=1

subject to — Bo — 63 34 —e < —7.4
— Bo — 127 B4 —e < —10.1
= Bo — 96 34 —e3 < —1n.3
— Bo — 105 B4 —e, < —15.9
— Bo — 115 B4 —es < —14.0
— Bo — 145 B —eg < —19.90
— By — 140 By —e; < —20.2
— Bo — 190 34 —eg < —20.9

... follows on next page . .. 10



The LP formulation of the QR problem

... follows from previous page:

minimize Zj; e

subject to Bo + 63 B4 —e < 7.4
Bo + 127 B —e < 10.1
Bo + 96 B —e3 < 1.3
Bo =+ 105 B4 —ey < 15.9
Bo + 15 B34 —es < 14.0
Bo + 145 34 —eg < 19.9
Bo + 140 B4 —ey < 20.2
Bo + 190 B4 —eg < 20.9
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The LP formulation of the QR problem

L, criterion for the p—variables problem

mﬁin >y —x' Bl
=

where:

* Y[ Is the vector of responses
* Xnxp] IS the regressor matrix

: ,B[p](Q) Is the vector of unknown parameters for the generic

conditional quantile 0

In the following, the simpler notation 3 is used to refer to the conditional

median case ( = 0.5)
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The LP formulation of the QR problem

Let us denote by [x]4+ the non negative part of x. By posing:

si=[y—XB]+
s2 = [XB —y]+

the original L1 problem can be formulated as:
: T T _ n
mén{1 ST+ 1 sz|y—Xﬁ+sq—sz,{sq,sz}él&_}.

Furthermore, let:

B=[X—X —1I],
and:
[B]+
-8+
¥ ly — xB]+
X8 —y]+
Opp)
g— | O
1)
1)
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The LP formulation of the QR problem

Such reformulation of the problem leads to a standard linear

programming problem
Primal formulation (equational form)
minimize d'
I P
subjectto By =y
6 > o.

Dual formulation (equational form)
maxidmize yTz
: T
subjectto B z < d.

theorem ensuring that the solutions of such a minimization problem have to

: . 108
be searched in the corners of the simplex



The LP formulation of the QR problem

The above problem can be reformulated as follows:
max{y ' z|x"z =0,z € [-1,+1]"}

In fact, the equality:

XTz =0
can be transformed as follows:
%XTZ =0 {moltiplicando per 3
%XTZ 4H %XT1 = %XT1 {aggiungendo %XT1}
The obtained formulation:
1
X' (—z+ —1) = X1 (1)
2 2
~——
] b

permits the expression of the dual problem as follows:

mgx{yTn\XTn =b,n € [0,1]"}
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The LP formulation of the QR problem

Although the role of 1/2 in the equation:

11 1
X! (—z+ —1) = _X"1 )
2" 9 2

n b
is seemingly neutral, it is the key to the generalization of the conditional median to

the conditional quantiles

Criterion for the generic conditional quantile "

A similar set of steps leads to the following dual formulation for the generic

guantile regression problem:
max{y z[X z= (1—6)x"1,z € [0,1]"},
4

where (1 — ) plays the same role that 1/2 played for the median formulation
110



Technical insight: a summary

- The mean and the quantiles are particular centers of a distribution
minimizing a squared sum of deviations and a weighted sum of deviations,

respectively

- This idea is easily generalized to the regression setting in order to estimate

conditional mean and conditional quantiles

- The development and dissemination of QR started with the formulation of
the QR problem as a LP problem. Such formulation allows to exploit efficient
methods and algorithms to solve a complex optimization problem offering
the way to explore the whole conditional distribution of a variable and not
only its center

- The QR problem typically exploits a variant of the well-known simplex
algorithm for a moderate size problem. In case of datasets with a large
number of units and/or covariates, interior-point methods and/or heuristic
approaches have introduced

m

Epilogue

112



A more complex world

We live in a paradoxical world, where the only true safety,
true though limited, comes from admitting both our
uncertainty and the incompleteness with which we are able

to meet it.

J. W. Tukey (1997)

13

A more complex world




A more complex world

Beyond the mean (epilogue)

What the regression curve does Is give a grand summary
for the averages of the distributions corresponding to the
set of X's. We could go further and compute several
different regression curves corresponding to the various
percentage points of the distributions and thus get a more

complete picture of the set.

Ordinarily this is not done, and so regression often gives a
rather incomplete picture. Just as the mean gives an
incomplete picture of a single distribution, so the
regression curve gives a correspondingly incomplete

picture for a set of distributions.

Mostseller and Tukey (1977) e



Beyond the mean (epilogue)

QR offers information on the whole conditional
distribution of the response variable, allowing us to
discern effects that would otherwise be judged equivalent

using only conditional expectation.

Nonetheless, the QR ability to statistically detect more
effects can not be considered a panacea for investigating
relationships between variables: in fact, the improved
ability to detect a multitude of effects forces the
investigator to clearly articulate what is important to the

process being studied and why.
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