Session 1
 Quantile, M-quantile \& Expectile Regression

Nikos Tzavidis (University of Southampton)
Ray Chambers (University of Wollongong) James Dawber(University of Wollongong)
Nicola Salvati (University of Pisa)

Pisa, July, 2016

Outline

- Defining robustness
- Estimating the centre (location) of a distribution
- Quantiles, M-quantiles \& expectiles as location parameters
- Regression quantiles, M-quantiles \& expectiles
- Asymmetric Laplace Distribution
- Quantile/M-quantile regression: A likelihood perspective
- Examples
- R Software

Defining Robustness

- Statistical inference is based on assumptions about the underlying distribution of the observations
- Although assumptions are never exactly true, some statistical models are more sensitive to small deviations from the assumptions than others
- An estimator is robust if it has the following features:
- Reasonably efficient and unbiased
- Small deviations from the model assumptions do not substantially impair the performance of the model
- Somewhat larger deviations will not invalidate the model completely

Robust Regression

- Following Huber (1981) we will interpret robustness as insensitivity to small deviations from the assumptions the model imposes
- In particular, we are interested in distributional robustness
- In this context, robust refers to the shape of a distribution specifically, when it differs from the theoretically assumed distribution
- Although conceptually distinct, distributional robustness and outlier resistance are, for practical purposes, synonymous here

Estimating the Centre of a Distribution

- In order to explain how robust regression works it is helpful to start with the simple case of robust estimation of a parameter at the centre of the distribution
- Consider a set of independent observations $y_{i}, i=1, \ldots, n$, and the linear model (special case of a GLM with identity link function)

$$
y_{i}=\mu_{i}+\epsilon_{i}
$$

- If the underlying distribution of ϵ is normal, the sample mean is the maximally efficient estimator.
- What if normality does not hold?

Session 1

Quantile, M-quantile \& Expectile
Regression

Estimating the Centre of a Distribution

Ordinary Least Squares (OLS)

- OLS popular estimation method \rightarrow No assumption of normality
- OLS is not robust to outliers. It can produce misleading results if unusual cases go undetected. Even a single case can have a significant impact on the regression fit
- The efficiency of the OLS regression can be hindered by heavy-tailed distributions and outliers
- Residual diagnostics can be used. But, once they are found, what shall we do?
- Consider reformulating the model e.g. use transformations. If these do not help, consider using robust regression

Estimating the Centre of a Distribution - OLS in Detail

- The mean, μ, is derived by minimising the least-squares objective function

$$
\min \sum_{i=1}^{n} \rho_{L S}\left(\epsilon_{i}\right)=\sum_{i=1}^{n} \rho_{L S}\left(y_{i}-\mu_{i}\right)=\sum_{i=1}^{n}\left(y_{i}-\mu_{i}\right)^{2}
$$

- The derivative of the objective function with respect to ϵ gives the influence function which determines the influence of the observations
- In this case the influence is 2ϵ i.e. proportional to ϵ

Estimating the Centre of a Distribution

$$
\epsilon_{i}=y_{i}-\mu_{i}
$$

Mean

Minimise $\sum \rho\left(\epsilon_{i}\right)$: $\rho\left(\epsilon_{i}\right) \propto \epsilon_{i}^{2}$

Estimating the Centre of a Distribution

- As an alternative to the mean we now consider the median, μ, as an estimator of the centre of a distribution
- The median is derived by minimising the least absolute-values (LAV) objective function

$$
\min \sum_{i=1}^{n} \rho_{L A V}\left(\epsilon_{i}\right)=\sum_{i=1}^{n} \rho_{L A V}\left(y_{i}-\mu_{i}\right)=\sum_{i=1}^{n}\left|y_{i}-\mu_{i}\right|
$$

- Resistant to outliers: The influence of an unusual observation on the median is now bounded

Estimating the Centre of a Distribution

$$
\epsilon_{i}=y_{i}-\mu_{i}
$$

Mean

Minimise $\sum \rho\left(\epsilon_{i}\right)$: $\rho\left(\epsilon_{i}\right) \propto \epsilon_{i}^{2}$

Median

$$
\begin{aligned}
& \text { Minimise } \sum \rho\left(\epsilon_{i}\right) \text { : } \\
& \rho\left(\epsilon_{i}\right) \propto\left|\epsilon_{i}\right|
\end{aligned}
$$

Estimating the Centre of a Distribution

- A good compromise between the efficiency of the least squares and the robustness of the least-absolute values estimators is the use of M-estimation
- An M-estimator for the centre of the distribution, μ, can be defined by using the Huber loss function

$$
\min \sum_{i=1}^{n} \rho_{H u b e r}\left(y_{i}-\mu_{i}\right)
$$

- With $\rho_{\text {Huber }}\left(\epsilon_{i}\right)= \begin{cases}\frac{1}{2} \epsilon_{i}^{2}, & \left|\epsilon_{i}\right| \leq c \\ c\left|\epsilon_{i}\right|-\frac{1}{2} c^{2}, & \left|\epsilon_{i}\right|>c\end{cases}$
- At the centre of the distribution the Huber function behaves like the $\rho_{L S}$ loss, at the extremes it behaves like the $\rho_{L A V}$ loss
- As $c \rightarrow 0$, robustness increases

Medians, means and something in between...

$$
\epsilon_{i}=y_{i}-\mu_{i}
$$

Mean

Minimise $\sum \rho\left(\epsilon_{i}\right)$:
$\rho\left(\epsilon_{i}\right) \propto \epsilon_{i}^{2}$

Median

Minimise $\sum \rho\left(\epsilon_{i}\right)$:
$\rho\left(\epsilon_{i}\right) \propto\left|\epsilon_{i}\right|$

M-estimator

Minimise $\sum \rho\left(\epsilon_{i}\right)$:

$$
\rho\left(\epsilon_{i}\right) \propto \begin{cases}\epsilon_{i}^{2}, & \text { if }\left|\epsilon_{i}\right|<c \\ \left|\epsilon_{i}\right|, & \text { if }\left|\epsilon_{i}\right| \geq c\end{cases}
$$

Re-cap: Defining the Centre (Location) of a Distribution

- Generally, a location parameter, μ, of $F(y)$ is defined by

$$
\min \int \rho\left(\frac{y-\mu}{\sigma}\right) F(d y)
$$

- A natural estimator of $\mu, \hat{\mu}$ is defined by

$$
\min \int \rho\left(\frac{y-\hat{\mu}}{\sigma}\right) \hat{F}(d y)
$$

- σ scale for achieving scale invariance
- $\rho(\epsilon)=\epsilon^{2} \rightarrow$ Mean
- $\rho(\epsilon)=|\epsilon| \rightarrow$ Median
- $\rho(\epsilon)=$ Huber \rightarrow M-estimator

M-Estimation: An applied viewpoint

$$
\min \sum_{i=1}^{n} \rho_{H u b e r}\left(\frac{y_{i}-\mu}{\sigma}\right)
$$

- Denote the derivative of $\rho_{\text {Huber }}$ by $\psi_{\text {Huber }}$ and recall that $\epsilon_{i}=\left(\frac{y_{i}-\mu}{\sigma}\right)$

$$
\psi_{\text {Huber }}= \begin{cases}\epsilon_{i}, & \text { if }\left|\epsilon_{i}\right|<c \\ \operatorname{csgn}\left(\epsilon_{i}\right), & \text { if }\left|\epsilon_{i}\right| \geq c\end{cases}
$$

- Estimation equation to be solved

$$
\sum_{i=1}^{n} \psi_{H u b e r}\left(\frac{y_{i}-\mu}{\sigma}\right)=0
$$

M-Estimation: An applied viewpoint

$$
\sum_{i=1}^{n} \psi_{H u b e r}\left(\frac{y_{i}-\mu}{\sigma}\right)=0
$$

- Solved with iterative weighted least squares
- Define $w_{i}=\frac{\psi_{\text {Huber }}\left(\epsilon_{i}\right)}{\epsilon_{i}}$
- Huber weights

$$
w_{i}= \begin{cases}1, & \text { if }\left|\epsilon_{i}\right|<c \\ \frac{c}{\mid \epsilon_{i}}, & \text { if }\left|\epsilon_{i}\right| \geq c\end{cases}
$$

- Estimating equation

$$
\sum_{i=1}^{n} w_{i}\left(y_{i}-\mu\right)=0
$$

M-Estimation: An applied viewpoint

$$
\sum_{i=1}^{n} w_{i}\left(y_{i}-\mu\right)=0
$$

- Solution $\mu=\frac{\sum_{i=1}^{n} w_{i} y_{i}}{\sum_{i=1}^{n} w_{i}}$
- But w_{i} depends on μ. Use iterative algorithm
- Start with initial value of $\mu^{(h)}$ and compute $w_{i}^{(h)}$
- Update $\mu \rightarrow \mu^{(h+1)}=\frac{\sum_{i=1}^{n} w_{i}^{(h)} y_{i}}{\sum_{i=1}^{n} w_{i}^{(h)}}$
- Solution when μ linear function of set of parameters β

$$
\beta^{(h+1)}=\left(x^{T} w^{(h)} x\right)^{-1} x^{T} w^{(h)} y
$$

- Iterate until convergence

Quantiles as Location Parameters

- The q quantile of $F(y), \mu_{y}(q)$, can be defined as the 'location' of the transformed distribution that weights observations below $\mu_{y}(q)$ by $(1-q)$ and observations above $\mu_{y}(q)$ by q

Generalising Quantiles

Definition

Let $0<q<1$. The q location parameter of $F(y)$ corresponding to loss function ρ_{q} is the value $\mu_{y}(q)$ that satisfies

$$
\min \int \rho_{q}\left(\frac{y-\mu_{y}(q)}{\sigma_{q}}\right) F(d y)
$$

- $\rho(\epsilon)=\epsilon^{2} \rightarrow$ Expectiles; $\rho(\epsilon)=|\epsilon| \rightarrow$ Quantiles
- $\rho(\epsilon)=$ Huber \rightarrow M-quantiles

M-quantiles in detail (Breckling \& Chambers,1988, Biometrika)

- Define by ψ_{q} the derivative of the Huber loss function
- Huber proposal 2 (influence function)

$$
\begin{gathered}
\psi_{q}(\epsilon)= \begin{cases}-(1-q) c & \epsilon<-c \\
(1-q) \epsilon & -c \leqslant \epsilon<0 \\
q \epsilon & 0 \leqslant \epsilon<c\end{cases} \\
q c
\end{gathered} \sqrt[c \leqslant \epsilon]{ } \begin{gathered}
\int \psi_{q}\left(\frac{y-\mu_{y}(q)}{\sigma_{q}}\right) F(d y)=0
\end{gathered}
$$

- Good compromise between efficiency and robustness

Regression Quantiles

(Koenker \& Bassett, 1978, Econometrica; Koenker \& Hallock JEP, 2001)

- Extend the idea to quantiles of conditional distributions
- Let $F(y \mid x)$ denote the distribution of y given x. The q regression quantile of y at $x=x$ is then $\mu_{y}(q \mid x=x)$, where $F\left(\mu_{y}(q \mid x=x)\right)=q$

A Linear Model for Regression Quantiles

$$
\mu_{y}(q \mid x)=x^{T} \beta_{q}
$$

- Computation: Koenker and D'Orey (1987)
- R: quantreg library
- Stata: qreg command
- Estimation of standard errors via bootstrap
- A number of bootstrap options available in quantreg

Quantile Regression - A Likelihood Perspective (Yu \& Moyeed, 2001, Statistics and Probability Letters)

Quantile Regression - A Likelihood Perspective

- Minimization of the $\rho_{L A V}$ is equivalent to the maximization of a likelihood function formed by combining independently distributed Asymmetric Laplace densities

$$
y \sim A L D(\mu, \sigma, q)
$$

with pdf

$$
f(y \mid \mu, \sigma, q)=\frac{q(1-q)}{\sigma} \exp \left(-\rho_{q}\left(\frac{y-\mu}{\sigma}\right)\right)
$$

- For fixed q the location parameter μ is modelled as a function of x.
- $\mu=x^{T} \beta_{q}$

Session 1 Quantile, M-quantile \& Expectile
Regression

Quantiles

$$
\rho_{q}(\epsilon)=\left[(1-q) \mathbb{I}_{(\epsilon \leq 0)}+q \mathbb{I}_{(\epsilon>0)}\right] \rho(\epsilon)
$$

$$
\epsilon=y-\mu
$$

Quantiles

Minimise $\sum \rho_{q}(\epsilon)$ where $\rho(\epsilon) \propto|\epsilon|$

Regression M-Quantiles

For fixed q and influence function ψ given by Huber's proposal 2 , compute $\hat{\beta}(q)$ by

$$
\sum_{i=1}^{n} \psi_{q}\left(\epsilon_{i q}\right) x_{i}=0
$$

- Residuals: $\epsilon_{i q}=\left(y_{i}-\mu_{y}\left(q \mid x_{i} ; \psi_{q}\right)\right) / \sigma_{q}$
- $\sigma_{q} \rightarrow$ scale parameter
- $\sigma_{q}=$ median $\left|\epsilon_{i q}\right| / 0.6745$
- $\psi_{q}\left(\epsilon_{i q}\right)=2 \psi\left(\epsilon_{i q}\right)\left\{q \mathbb{I}\left(\epsilon_{i q}>0\right)+(1-q) \mathbb{I}\left(\epsilon_{i q} \leqslant 0\right)\right\}$

Regression M-Quantiles - Estimation
(Chambers and Tzavidis, 2006, Biometrika)

- Fitting: Use iteratively re-weighted least squares (IRLS)
- Function QRLM in R available from the authors
- Estimation of standard errors (Bianchi \& Salvati, Comm. in Stat., 2014)

$$
\widehat{\operatorname{Var}}\left(\hat{\beta}_{q}\right)=\hat{\sigma}_{q} \frac{\hat{E}\left(\psi_{q}^{2}(\epsilon)\right)}{\hat{E}\left(\psi_{q}^{\prime}(\epsilon)\right)^{2}}\left(x^{T} x\right)^{-1}
$$

M-Quantile Regression - A Likelihood Perspective (Bianchi, Fabrizi, Salvati \& Tzavidis, 2014)

M-Quantile Regression - A Likelihood Perspective

- Minimization of the $\rho_{H u b e r}$ is equivalent to the maximization of a likelihood function formed by combining independently distributed Asymmetric Least Information densities (ALID)

$$
\begin{aligned}
y & \sim \operatorname{ALID}(\mu, \sigma, q, c) \\
f(y \mid \mu, \sigma, q, c) & =\frac{1}{\sigma B} \exp \left[-\rho_{H u b e r}\left(\frac{y-\mu}{\sigma}\right)\right]
\end{aligned}
$$

- The location parameter (M -quantiles) μ are modelled by using $x, \mu=x^{T} \beta_{q}$

Quantiles, expectiles and something in between...

$$
\epsilon=y-\mu
$$

Quantile

Minimise $\sum \rho_{q}(\epsilon)$ where $\rho(\epsilon) \propto|\epsilon|$

Expectile

Minimise $\sum \rho_{q}(\epsilon)$ where $\rho(\epsilon) \propto \epsilon^{2}$

Huber M-quantile
Minimise $\sum \rho_{q}(\epsilon)$ where

$$
\rho(\epsilon) \propto \begin{cases}\epsilon^{2}, & \text { if }|\epsilon|<c \\ |\epsilon|, & \text { if }|\epsilon| \geq c\end{cases}
$$

Session 1
Quantile, M-quantile \& Expectile Regression

Quantile, M-quantile \& Expectile Regression

Session 1
Quantile, M-quantile \& Expectile Regression

Quantile, M-quantile \& Expectile Regression

Quantile, M-quantile \& Expectile Regression

Heteroscedasticity \& Symmetry

if errors are symmetric, then $\boldsymbol{\beta}_{q}=-\boldsymbol{\beta}_{1-q} \forall q<0.5$

Session 1
Quantile, M-quantile \& Expectile Regression

Heteroscedasticity \& Asymmetry

More on Graphical Diagnostics

- Spacing of quantile lines important
- Larger spacing \Rightarrow Longer tail
- Shorter spacing \Rightarrow Shorter tail

An Example

- Data on household income and food expenditure (Koenker \& Hallock, JEP, 2001)
- Data from 235 European working-class households
- Plot presents estimated quantile regression lines corresponding to the quantiles $0.05,0.1,0.25,0.5,0.75$, $0.9,0.95$ alongside the median and mean fits

Session 1 Quantile, M-quantile \& Expectile Regression

Quantile Regression: An Example

Quantile Regression: Comments on the Example Koenker \& Hallock, JEP, 2001

- Dispersion of food expenditure increases as household income increases
- Spacing of the quantile regression lines shows that the conditional distribution of household food expenditure, given household income, is skewed to the left
- Narrower spacing of the upper quantiles showing a short upper tail
- Wider spacing of the lower quantiles indicating a longer lower tail

Extensions

- Until now we have assumed a linear model for quantiles/M-quantiles
- The scope of quantile/M-quantile regression can be significantly extented by allowing for more complex model specifications
- Non-parametric quantile/M-quantile regression

Session 1
Quantile, M-quantile \& Expectile Regression

Non-parametric Quantile / M-quantile Regression

M-quantile Fits

M-quantile Fits

Regression M-quantiles Vs Regression Quantiles

- M-quantile estimation via IWLS. Easier to estimate / convergence
- M-quantile regression allows for more flexibility in modelling. For example, the tuning constant c used in the Huber influence function
- c can be used to trade outlier robustness for efficiency (M-quantile Vs. expectile regression)
- $c \rightarrow 0$ quantile regression
- $c \rightarrow \infty$ expectile regression
- However, M-quantiles are harder to interpret. Useful for prediction purposes (e.g. small area estimation)

R Packages

Table: Quantile, M-quantile \& Expectile Regression

Regression Type	Target Parameter	R Package
OLS	Mean	$I m$
Robust	Median	$r / m,(M A S S)$
Quantile	Quantiles	rq,(quantreg)
Quantile (ALD)	Quantiles	Iqm, (lqmm)
Bayesian Quantile (ALD)	Quantiles	(bayesQR)
M-Quantile, Expectile	M-quantiles/Expectiles	1
Expectile	Expectiles	am/normal, ${ }^{2}$

[^0]
[^0]: ${ }^{1}$ Available from the presenters
 ${ }^{2}$ VGAM

