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Outline

• Defining robustness

• Estimating the centre (location) of a distribution

• Quantiles, M-quantiles & expectiles as location parameters

• Regression quantiles, M-quantiles & expectiles

• Asymmetric Laplace Distribution

• Quantile/M-quantile regression: A likelihood perspective

• Examples

• R Software
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Defining Robustness

• Statistical inference is based on assumptions about the
underlying distribution of the observations

• Although assumptions are never exactly true, some
statistical models are more sensitive to small deviations
from the assumptions than others

• An estimator is robust if it has the following features:

• Reasonably efficient and unbiased
• Small deviations from the model assumptions do not

substantially impair the performance of the model
• Somewhat larger deviations will not invalidate the model

completely
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Robust Regression

• Following Huber (1981) we will interpret robustness as
insensitivity to small deviations from the assumptions the
model imposes

• In particular, we are interested in distributional robustness

• In this context, robust refers to the shape of a distribution
specifically, when it differs from the theoretically assumed
distribution

• Although conceptually distinct, distributional robustness
and outlier resistance are, for practical purposes,
synonymous here
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Estimating the Centre of a Distribution

• In order to explain how robust regression works it is helpful
to start with the simple case of robust estimation of a
parameter at the centre of the distribution

• Consider a set of independent observations yi, i = 1, ..., n,
and the linear model (special case of a GLM with identity
link function)

yi = µi + εi

• If the underlying distribution of ε is normal, the sample
mean is the maximally efficient estimator.

• What if normality does not hold?
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Estimating the Centre of a Distribution
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Ordinary Least Squares (OLS)

• OLS popular estimation method → No assumption of
normality

• OLS is not robust to outliers. It can produce misleading
results if unusual cases go undetected. Even a single case
can have a significant impact on the regression fit

• The efficiency of the OLS regression can be hindered by
heavy-tailed distributions and outliers

• Residual diagnostics can be used. But, once they are
found, what shall we do?

• Consider reformulating the model e.g. use transformations.
If these do not help, consider using robust regression
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Estimating the Centre of a Distribution - OLS in
Detail

• The mean, µ, is derived by minimising the least-squares
objective function

min

n∑
i=1

ρLS(εi) =

n∑
i=1

ρLS(yi − µi) =
n∑
i=1

(yi − µi)2

• The derivative of the objective function with respect to ε
gives the influence function which determines the influence
of the observations

• In this case the influence is 2ε i.e. proportional to ε
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Estimating the Centre of a Distribution
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Estimating the Centre of a Distribution

• As an alternative to the mean we now consider the
median, µ, as an estimator of the centre of a distribution

• The median is derived by minimising the least
absolute-values (LAV) objective function

min

n∑
i=1

ρLAV (εi) =

n∑
i=1

ρLAV (yi − µi) =
n∑
i=1

|yi − µi|

• Resistant to outliers: The influence of an unusual
observation on the median is now bounded
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Estimating the Centre of a Distribution

• A good compromise between the efficiency of the least
squares and the robustness of the least-absolute values
estimators is the use of M-estimation

• An M-estimator for the centre of the distribution, µ, can
be defined by using the Huber loss function

min

n∑
i=1

ρHuber(yi − µi)

• With ρHuber(εi) = {
1
2ε

2
i , |εi| ≤ c

c|εi| − 1
2c

2, |εi| > c

• At the centre of the distribution the Huber function
behaves like the ρLS loss, at the extremes it behaves like
the ρLAV loss

• As c→ 0, robustness increases
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Medians, means and something in between...
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∑
ρ(εi):

ρ(εi) ∝ ε2i

Median
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∑
ρ(εi):

ρ(εi) ∝ |εi|

M-estimator

Minimise
∑
ρ(εi):

ρ(εi) ∝
{

ε2i , if |εi| < c
|εi|, if |εi| ≥ c
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Re-cap: Defining the Centre (Location) of a
Distribution

• Generally, a location parameter, µ, of F (y) is defined by

min

∫
ρ

(
y − µ
σ

)
F (dy)

• A natural estimator of µ, µ̂ is defined by

min

∫
ρ

(
y − µ̂
σ

)
F̂ (dy)

• σ scale for achieving scale invariance

• ρ(ε) = ε2 → Mean

• ρ(ε) = |ε| → Median

• ρ(ε) = Huber → M-estimator
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M-Estimation: An applied viewpoint

min

n∑
i=1

ρHuber

(
yi − µ
σ

)
• Denote the derivative of ρHuber by ψHuber and recall that
εi = (yi−µσ )

ψHuber =

{
εi, if |εi| < c
csgn(εi), if |εi| ≥ c

• Estimation equation to be solved

n∑
i=1

ψHuber

(
yi − µ
σ

)
= 0
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M-Estimation: An applied viewpoint

n∑
i=1

ψHuber

(
yi − µ
σ

)
= 0

• Solved with iterative weighted least squares

• Define wi =
ψHuber(εi)

εi

• Huber weights

wi =

{
1, if|εi| < c
c
|εi| , if|εi| ≥ c

• Estimating equation

n∑
i=1

wi(yi − µ) = 0



Session 1
Quantile,

M-quantile &
Expectile
Regression

M-Estimation: An applied viewpoint

n∑
i=1

wi(yi − µ) = 0

• Solution µ =
∑n

i=1 wiyi∑n
i=1 wi

• But wi depends on µ. Use iterative algorithm

• Start with initial value of µ(h) and compute w
(h)
i

• Update µ → µ(h+1) =
∑n

i=1 w
(h)
i yi∑n

i=1 w
(h)
i

• Solution when µ linear function of set of parameters β

β(h+1) = (xTw(h)x)−1xTw(h)y

• Iterate until convergence
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Quantiles as Location Parameters

• The q quantile of F (y) ,µy(q), can be defined as the
’location’ of the transformed distribution that weights
observations below µy(q) by (1− q) and observations
above µy(q) by q
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Generalising Quantiles

Definition

Let 0 < q < 1. The q location parameter of F (y) corresponding
to loss function ρq is the value µy(q) that satisfies

min

∫
ρq

(
y − µy(q)

σq

)
F (dy),

• ρ(ε) = ε2 → Expectiles; ρ(ε) = |ε| → Quantiles

• ρ(ε) = Huber → M-quantiles
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M-quantiles in detail (Breckling & Chambers,1988,
Biometrika)

• Define by ψq the derivative of the Huber loss function

• Huber proposal 2 (influence function)

ψq(ε) =

{ −(1− q)c ε < −c
(1− q)ε −c 6 ε < 0
qε 0 6 ε < c
qc c 6 ε∫

ψq

(
y − µy(q)

σq

)
F (dy) = 0

• Good compromise between efficiency and robustness
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Regression Quantiles
(Koenker & Bassett, 1978, Econometrica; Koenker & Hallock JEP, 2001)

• Extend the idea to quantiles of conditional distributions

• Let F (y|x) denote the distribution of y given x. The q
regression quantile of y at x = x is then µy(q|x = x),
where F (µy(q|x = x)) = q
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A Linear Model for Regression Quantiles

µy(q|x) = xTβq

• Computation: Koenker and D’Orey (1987)

• R: quantreg library

• Stata: qreg command

• Estimation of standard errors via bootstrap

• A number of bootstrap options available in quantreg



Session 1
Quantile,

M-quantile &
Expectile
Regression

Quantile Regression - A Likelihood Perspective (Yu
& Moyeed, 2001, Statistics and Probability Letters)

Quantile Regression - A Likelihood Perspective

• Minimization of the ρLAV is equivalent to the
maximization of a likelihood function formed by combining
independently distributed Asymmetric Laplace densities

y ∼ ALD(µ, σ, q),

with pdf

f(y|µ, σ, q) = q(1− q)
σ

exp

(
− ρq

(
y − µ
σ

))
• For fixed q the location parameter µ is modelled as a

function of x.

• µ = xTβq
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Quantiles

ρq(ε) =
[
(1− q)I(ε≤0) + qI(ε>0)

]
ρ(ε)
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where ρ(ε) ∝ |ε|
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Regression M-Quantiles

For fixed q and influence function ψ given by Huber’s proposal
2, compute β̂(q) by

n∑
i=1

ψq(εiq)xi = 0

• Residuals: εiq = (yi − µy(q|xi;ψq))/σq
• σq → scale parameter

• σq= median|εiq|/0.6745
• ψq(εiq) = 2ψ(εiq){qI(εiq > 0) + (1− q)I(εiq 6 0)}
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Regression M-Quantiles - Estimation
(Chambers and Tzavidis, 2006, Biometrika)

• Fitting: Use iteratively re-weighted least squares (IRLS)

• Function QRLM in R available from the authors

• Estimation of standard errors (Bianchi & Salvati, Comm.
in Stat., 2014)

V̂ ar(β̂q) = σ̂q
Ê(ψ2

q (ε))

Ê(ψ′q(ε))
2
(xTx)−1



Session 1
Quantile,

M-quantile &
Expectile
Regression

M-Quantile Regression - A Likelihood Perspective
(Bianchi, Fabrizi, Salvati & Tzavidis, 2014)

M-Quantile Regression - A Likelihood Perspective

• Minimization of the ρHuber is equivalent to the
maximization of a likelihood function formed by combining
independently distributed Asymmetric Least Information
densities (ALID)

y ∼ ALID(µ, σ, q, c),

f(y|µ, σ, q, c) = 1

σB
exp

[
−ρHuber

(
y − µ
σ

)]
,

• The location parameter (M-quantiles)µ are modelled by
using x, µ = xTβq
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Quantiles, expectiles and something in between...

ρq(ε) =
[
(1− q)I(ε≤0) + qI(ε>0)

]
ρ(ε)
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Expectile
Quantile
Huber M−quantile (k=1.3)

q= 0.1

q= 0.5

q= 0.9

ε = y − µ

Quantile

Minimise
∑
ρq(ε) where

ρ(ε) ∝ |ε|

Expectile

Minimise
∑
ρq(ε) where

ρ(ε) ∝ ε2

Huber M -quantile

Minimise
∑
ρq(ε) where

ρ(ε) ∝
{

ε2, if |ε| < c
|ε|, if |ε| ≥ c
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Heteroscedasticity & Symmetry
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Heteroscedasticity & Asymmetry
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More on Graphical Diagnostics

• Spacing of quantile lines important

• Larger spacing ⇒ Longer tail

• Shorter spacing ⇒ Shorter tail
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An Example

• Data on household income and food expenditure (Koenker
& Hallock, JEP, 2001)

• Data from 235 European working-class households

• Plot presents estimated quantile regression lines
corresponding to the quantiles 0.05, 0.1, 0.25, 0.5, 0.75,
0.9, 0.95 alongside the median and mean fits
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Quantile Regression: An Example
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Quantile Regression: Comments on the Example -
Koenker & Hallock, JEP, 2001

• Dispersion of food expenditure increases as household
income increases

• Spacing of the quantile regression lines shows that the
conditional distribution of household food expenditure,
given household income, is skewed to the left

• Narrower spacing of the upper quantiles showing a short
upper tail

• Wider spacing of the lower quantiles indicating a longer
lower tail
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Extensions

• Until now we have assumed a linear model for
quantiles/M-quantiles

• The scope of quantile/M-quantile regression can be
significantly extented by allowing for more complex model
specifications

• Non-parametric quantile/M-quantile regression
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Non-parametric Quantile / M-quantile Regression
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Regression M-quantiles Vs Regression Quantiles

• M-quantile estimation via IWLS. Easier to estimate /
convergence

• M-quantile regression allows for more flexibility in
modelling. For example, the tuning constant c used in the
Huber influence function

• c can be used to trade outlier robustness for efficiency
(M-quantile Vs. expectile regression)

• c → 0 quantile regression

• c → ∞ expectile regression

• However, M-quantiles are harder to interpret. Useful for
prediction purposes (e.g. small area estimation)
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R Packages

Table: Quantile, M-quantile & Expectile Regression

Regression Type Target Parameter R Package

OLS Mean lm
Robust Median rlm,(MASS)

Quantile Quantiles rq,(quantreg)
Quantile (ALD) Quantiles lqm, (lqmm)

Bayesian Quantile (ALD) Quantiles (bayesQR)
M-Quantile, Expectile M-quantiles/Expectiles 1

Expectile Expectiles amlnormal,2

1Available from the presenters
2VGAM


