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Longitudinal data

@ Data are repeatedly collected over time on a sample of units

@ We have a two stage sample

ly;, Xi] = ([}/il,xilL coos [Yies Xit ], oo [,mei])

e y;:'s are realizations of continuous random variables Y
e X;;:'s are vectors of p explanatory variables

Observations coming from the same individual are associated because of
the presence of unobserved factors (unobserved heterogeneity)
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Hidden Markov models for longitudinal data (Bartolucci et al. 2012)

Unobserved dynamics are captured via random parameters evolving over
time according to a homogeneous, first order, hidden Markov chain {S;:}

@ Foragiven t=1,..., T, the outcome y;; is influenced by S;; only

@ Conditional on the hidden states, longitudinal observations are independent

T

f;’|5(yi | S H yls }/lt | slt

t=1
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Linear quantile hidden Markov models - IgHMM  (Farcomeni, 2012)

AIM: Analyse the relation between a set of explanatory variables and the
quantiles of a continuous outcome

Conditional on a quantile-specific hidden Markov chain, the 7-th
(conditional) quantile regression model is defined by

Q-(yit | sit) = X:’tﬂ(T) + W:‘tasit(T)

ML estimates can be obtained by conveniently assuming a (conditional)
asymmetric Laplace distribution (Geraci and Bottai, 2007)

ALD (xi:B(7) + Wirerg, (7, 0, T)
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Drop-out in longitudinal studies

o Let the longitudinal study be designed to collect T repeated measures
of a continuous response variable
Yi = (Yits - ¥iT)

@ Some units drop-out before the end of the study

yi = (yioa y71) = (yila - YiTis NA) ceey NA)
Missing data generating process

@ IGNORABLE: Conditional on (y¢,x;) the missing data process does not
provide information on the missing responses

@ NON-IGNORABLE: the probability that a unit remains into the study
depends on unobserved responses

“Joint” models for the observed and the missing data process are often
considered in this context (Little and Rubin, 2002)

v
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Modeling non-ignorable drop-out

@ Selection models (Heckman, 1976)

fye(yir Ti) = £, (yi) fe, (Ti | yi)
e Pattern mixture models (Little, 1993)

fye(yi Ti) = (T e(yi | T)

@ Random coefficient based missing data models

ey T) = / ool T | 015y | b)dF b by)

o If u; = b; — shared parameter models (Wu and Carroll, 1988)
o If a survival model describes the time to drop-out — joint models
(Rizopoulos, 2012)
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|
Pattern mixture models (PMMs - Little, 1993)

@ Each individual has its own propensity to drop-out from the study

e Individuals with similar drop-out history share similar (unobserved)
features

@ The model for the whole population is given by a mixture over
drop-out patterns

@ PMMs are weakly identifiable due a (potentially) large number of
patterns — identifiability constraints are needed
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Latent drop-out class model (Roy, 2003; Roy and Daniels, 2008)

@ Individual propensities to drop-out from the study can be described by
a latent drop-out (LDO) class variable with G ordered categories

@ The length of the observation window influences the probability of
belonging to one of the G LDO classes

@ Conditional on the LDO class variable, the observed and the missing
data process are independent
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LDO classes in linear quantile HMMs  (Marino et al., 2015)

We extend the proposal by Farcomeni (2012) in a LDO class perspective

@ Quantile regression offers a complete picture of the outcome
distribution and ensures robustness against potential outliers.

@ The hidden Markov structure allows for time-varying dependence
@ LDO classes help account for potentially non-ignorable drop-outs
For a given quantile 7 € (0,1)

o let {Sj:(7)} be a quantile-specific, homogeneous, hidden Markov chain

o let ¢;(7) = (¢a(7), .-, Cig(7)) be a quantile-dependent LDO class
membership
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-
Linear quantile HMM+LDO: model assumptions

@ Latent variables ¢;(7) and S;;(7) are
independent

@ For a given time occasion, y;; is influenced
only by Si(7) and ¢;(7)

@ Conditional on the latent variables,
longitudinal observations are independent

T
f(yi i Ciim) = 16 e | s, Ci57)

t=1

@ Conditional on ¢;, the observed and the
missing data process are independent
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-
IgHMM+LDO: model specification

@ Model for the LDO class variable

8
exp{)‘Og + )\1 Tl}
P ,':1 7_, =
r(;g’ | ) 1+ exp{Aog + M Ti}

@ Model for the hidden Markov chain

Ti
f(si) = ds; H Jsiase 1 =1,.,n
=2
@ Conditional (on ¢ and S;) model for the complete longitudinal responses

[Yie | Sie = sit, Cig = 1; 7] ~ ALD (X;tﬁ(T) + Z:'tbg(T) + Wgtasiz(‘r)’ g, T)
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Linear quantile HMM+LDO: the likelihood

The individual contribution to the observed (conditional) data likelihood is

(| Tir) /ZZ {Hf;’Sb Yie | sit, bg; T Sll(T)Han 1Sit(r) T)}Trlg(T T)dy]"
g=1s;(7)
(1)

The LDO class variable summarizes the information on the dependence
between y; and T;; missing data can be integrated out from equation (1)

(| Tim) = HZZ{H@sbymls,hbw Hqs,t }mg(r,-:f) ()

i=1 g=1s;(r)

and inference can be based on the observed data only
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Parameter estimation, inference and model selection

e An EM algorithm (Dempster et al., 1977) may be used to derive
parameter estimates

o Extended forward and backward variables (Baum et al., 1970) can be
exploited to simplify the computation

@ Confidence intervals for parameter estimates are obtained via a
non-parametric block bootstrap (Lahiri, 1999)

@ The number of LDO classes and hidden states are treated as known
and estimated via model selection techniques
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Application: the CD4 dataset

AIM: analysing HIV progression over time via the count of CD4 cells
369 men affected by HIV are observed for 1 to 12 occasions
CD4 count levels are measured at each visit
The following covariates are measured
o Age: age at seroconversion (centred at 30)
Drugs: drug use
Packs: packs of cigarette per day
Partners: number of sexual partners
CESD: depression symptoms measured according to the CESD scale
Timesero, : years since seroconversion

We model the quantiles of the log-transformed CD4 counts and compare
results obtained under IgHMM and IgHMM+LDO

We focus on
@ State-dependent intercept
@ LDO-dependent slope for Timesero
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Fixed and state-dependent parameters for the median

IqHMM IqHMM+LDO
# Par 36 33
Log-L -1082.530 -1018.042
BIC 2377.802 2231.139
o 5628  (5.074;5.753) 6.043  (5.931; 6.114)
o 6.108  (6.014; 6.252)  6.416  (6.323; 6.502)
a3 6.524  (6.393; 6.574)  6.710  (6.647; 6.825)
o 6.805  (6.710; 6.874)  7.040  (6.973; 7.215)
as 7.101  (7.084; 7.291) - -
Age -0.003  (-0.007;0.005)  0.004  (-0.001; 0.007)
Drugs 0.036  (-0.016; 0.110)  0.072  (-0.006; 0.145)
Packs 0.049  (0.014; 0.068)  0.042  (0.014; 0.054)
Partners ~ 0.002 (-0.003; 0.012)  0.005  (0.000; 0.012)
CESD  -0.005 (-0.007;-0.001) -0.004 -(-0.006 -0.002)

Timesero  -0.110  (-0.126; -0.084) -0.146  (-0.175; -0.119)

@ Under IgHMM, a further hidden state is needed

State-specific intercepts identify increasing CD4 count levels

@ Packs of cigarettes and number of sexual partners have a positive effect, while age and
drug use play no role. More sever depression symptoms lead to decreasing CD4 counts

@ CD4 counts decrease as the time since seroconversion increases
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LDO class parameters

In the longitudinal data model

by by b3 bs

-0.497 -0.176 -0.070 0.033
(-0.667 -0.452)  (-0.200 -0.155)  (-0.098 -0.056)  (-0.023 0.047)

The decrease in CD4 counts over time progressively reduces when moving towards
higher LDO classes

In the LDO class model

Aot Ao2 Aos A1

-1.062 1.113 4.089 -0.193
(-2.112; -0.241)  (0.013; 2.102)  (2.002; 5.299)  (-0.318; -0.065)

7

When the length of the observation window increases, the probability of “higher’

categories increases
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Individual trajectories

ogteount+1)
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Concluding remarks

@ Sources of unobserved heterogeneity are modelled via a hidden
Markov chain

@ Bias in the parameter estimates is avoided considering the LDO class
variable

@ Clustering of units in homogeneous LDO classes offers a clearer
interpretation of results

@ The semi-parametric nature of the latent variables ensures model
flexibility
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