Latent drop-out classes in linear quantile hidden Markov models

M.F. Marino¹ N. Tzavidis² M. Alfó³

¹University of Perugia ²University of Southampton ³Sapienza, University of Rome

Unversity of Pisa

Recent Advances in Quantile and M-quantile Regression

July 15, 2015

Longitudinal data

- Data are repeatedly collected over time on a sample of units
- We have a two stage sample

$$[\mathbf{y}_i, \mathbf{X}_i] = ([y_{i1}, \mathbf{x}_{i1}], ..., [y_{it}, \mathbf{x}_{it}], ..., [y_{iT}, \mathbf{x}_i])$$

- y_{it} 's are realizations of continuous random variables Y_{it}
- \mathbf{x}_{it} 's are vectors of p explanatory variables

Observations coming from the same individual are associated because of the presence of unobserved factors (unobserved heterogeneity)

Hidden Markov models for longitudinal data (Bartolucci et al. 2012)

Unobserved dynamics are captured via random parameters evolving over time according to a homogeneous, first order, hidden Markov chain $\{S_{it}\}$

- For a given t = 1, ..., T, the outcome y_{it} is influenced by S_{it} only
- Conditional on the hidden states, longitudinal observations are independent

$$f_{y|s}(\mathbf{y}_i \mid \mathbf{s}_i) = \prod_{t=1}^{I} f_{y|s}(y_{it} \mid s_{it})$$

Linear quantile hidden Markov models - IqHMM (Farcomeni, 2012)

AIM: Analyse the relation between a set of explanatory variables and the quantiles of a **continuous** outcome

Conditional on a quantile-specific hidden Markov chain, the au-th (conditional) quantile regression model is defined by

$$Q_{ au}(y_{it} \mid s_{it}) = \mathbf{x}_{it}' \boldsymbol{\beta}(au) + \mathbf{w}_{it}' \boldsymbol{\alpha}_{s_{it}(au)}$$

ML estimates can be obtained by *conveniently* assuming a (conditional) asymmetric Laplace distribution (Geraci and Bottai, 2007)

$$\mathsf{ALD}\left(\mathbf{x}_{\mathit{it}}'\boldsymbol{eta}(au)+\mathbf{w}_{\mathit{it}}'\boldsymbol{lpha}_{s_{\mathit{it}}(au)},\sigma, au
ight)$$

Drop-out in longitudinal studies

 Let the longitudinal study be designed to collect T repeated measures of a continuous response variable

$$\mathbf{y}_{i} = (y_{i1}, ..., y_{iT})$$

Some units drop-out before the end of the study

$$\mathbf{y}_{i} = (\mathbf{y}_{i}^{o}, \mathbf{y}_{i}^{m}) = (y_{i1}, ..., y_{iT_{i}}, NA, ..., NA)$$

Missing data generating process

- IGNORABLE: Conditional on $(\mathbf{y}_i^o, \mathbf{x}_i)$ the missing data process does not provide information on the missing responses
- NON-IGNORABLE: the probability that a unit remains into the study depends on unobserved responses

"Joint" models for the observed and the missing data process are often considered in this context (Little and Rubin, 2002)

Modeling non-ignorable drop-out

Selection models (Heckman, 1976)

$$f_{y,t}(\mathbf{y}_i, T_i) = f_y(\mathbf{y}_i) f_{t|y}(T_i \mid \mathbf{y}_i)$$

Pattern mixture models (Little, 1993)

$$f_{y,t}(\mathbf{y}_i, T_i) = f_t(T_i) f_{y|t}(\mathbf{y}_i \mid T_i)$$

• Random coefficient based missing data models

$$f_{y,t}(\mathbf{y}_i, T_i) = \int f_{t|u}(T_i \mid \mathbf{u}_i) f_{y|b}(\mathbf{y}_i \mid \mathbf{b}_i) dF_{u,b}(\mathbf{u}_i, \mathbf{b}_i)$$

- If $\mathbf{u}_i = \mathbf{b}_i \to \text{shared parameter models (Wu and Carroll, 1988)}$
- ullet If a survival model describes the time to drop-out o joint models (Rizopoulos, 2012)

Pattern mixture models (PMMs - Little, 1993)

- Each individual has its own propensity to drop-out from the study
- Individuals with similar drop-out history share similar (unobserved) features
- The model for the whole population is given by a mixture over drop-out patterns
- PMMs are weakly identifiable due a (potentially) large number of patterns → identifiability constraints are needed

Latent drop-out class model (Roy, 2003; Roy and Daniels, 2008)

- Individual propensities to drop-out from the study can be described by a latent drop-out (LDO) class variable with *G* ordered categories
- The length of the observation window influences the probability of belonging to one of the G LDO classes
- Conditional on the LDO class variable, the observed and the missing data process are independent

LDO classes in linear quantile HMMs (Marino et al., 2015)

We extend the proposal by Farcomeni (2012) in a LDO class perspective

- Quantile regression offers a complete picture of the outcome distribution and ensures robustness against potential outliers.
- The hidden Markov structure allows for time-varying dependence
- LDO classes help account for potentially non-ignorable drop-outs

For a given quantile $au \in (0,1)$

- ullet let $\{S_{it}(au)\}$ be a quantile-specific, homogeneous, hidden Markov chain
- let $\zeta_i(\tau) = (\zeta_{i1}(\tau), ..., \zeta_{iG}(\tau))$ be a quantile-dependent LDO class membership

Linear quantile HMM+LDO: model assumptions

- Latent variables $\zeta_i(\tau)$ and $S_{it}(\tau)$ are independent
- For a given time occasion, y_{it} is influenced only by $S_{it}(\tau)$ and $\zeta_i(\tau)$
- Conditional on the latent variables, longitudinal observations are independent

$$f_y(\mathbf{y}_i \mid \mathbf{s}_i, \boldsymbol{\zeta}_i; \tau) = \prod_{t=1}^{T_i} f_y(y_{it} \mid s_{it}, \boldsymbol{\zeta}_i; \tau)$$

• Conditional on ζ_i , the observed and the missing data process are independent

IqHMM+LDO: model specification

Model for the LDO class variable

$$\Pr\bigg(\sum_{l=1}^g \zeta_{il} = 1 \mid \mathcal{T}_i\bigg) = \frac{\exp\{\lambda_{0g} + \lambda_1 \mathcal{T}_i\}}{1 + \exp\{\lambda_{0g} + \lambda_1 \mathcal{T}_i\}}$$

Model for the hidden Markov chain

$$f(\mathbf{s}_i) = \delta_{s_{i1}} \prod_{t=2}^{T_i} q_{s_{it-1}s_{it}} \quad i = 1,..,n$$

ullet Conditional (on ζ and S_{it}) model for the **complete** longitudinal responses

$$[\textit{Y}_{\textit{it}} \mid \textit{S}_{\textit{it}} = \textit{s}_{\textit{it}}, \zeta_{\textit{ig}} = 1; \tau] \sim \textit{ALD}\left(\mathbf{x}_{\textit{it}}'\boldsymbol{\beta}(\tau) + \mathbf{z}_{\textit{it}}'\mathbf{b}_{\textit{g}}(\tau) + \mathbf{w}_{\textit{it}}'\alpha_{\textit{s}_{\textit{it}}(\tau)}, \ \sigma, \ \tau\right)$$

Linear quantile HMM+LDO: the likelihood

The individual contribution to the observed (conditional) data likelihood is

$$L_{i}(\cdot \mid T_{i}; \tau) = \int \sum_{g=1}^{G} \sum_{\mathbf{s}_{i}(\tau)} \left\{ \prod_{t=1}^{T} f_{y\mid sb}(y_{it} \mid s_{it}, \mathbf{b}_{g}; \tau) \delta_{s_{i1}}(\tau) \prod_{t=2}^{T} q_{s_{it-1}s_{it(\tau)}}(\tau) \right\} \pi_{ig}(T_{i}; \tau) d\mathbf{y}_{i}^{m}$$

$$\tag{1}$$

The LDO class variable summarizes the information on the dependence between \mathbf{y}_i and T_i ; missing data can be integrated out from equation (1)

$$L_{i}(\cdot \mid T_{i}; \tau) = \prod_{i=1}^{n} \sum_{g=1}^{G} \sum_{s_{i}(\tau)} \left\{ \prod_{t=1}^{T_{i}} f_{y \mid sb}(y_{it}^{\circ} \mid s_{it}, \mathbf{b}_{g}; \tau) \delta_{s_{i1}}(\tau) \prod_{t=2}^{T_{i}} q_{s_{it-1}s_{it(\tau)}}(\tau) \right\} \pi_{ig}(T_{i}; \tau) \quad (2)$$

and inference can be based on the observed data only

Parameter estimation, inference and model selection

- An EM algorithm (Dempster et al., 1977) may be used to derive parameter estimates
- Extended forward and backward variables (Baum et al., 1970) can be exploited to simplify the computation
- Confidence intervals for parameter estimates are obtained via a non-parametric block bootstrap (Lahiri, 1999)
- The number of LDO classes and hidden states are treated as known and estimated via model selection techniques

Application: the CD4 dataset

- AIM: analysing HIV progression over time via the count of CD4 cells
- 369 men affected by HIV are observed for 1 to 12 occasions
- CD4 count levels are measured at each visit
- The following covariates are measured
 - Age: age at seroconversion (centred at 30)
 - Drugs: drug use
 - Packs: packs of cigarette per day
 - Partners: number of sexual partners
 - CESD: depression symptoms measured according to the CESD scale
 - *Time_{sero}*: years since seroconversion

We model the quantiles of the log-transformed CD4 counts and compare results obtained under IqHMM and IqHMM+LDO

We focus on

- State-dependent intercept
- LDO-dependent slope for Time_{sero}

Fixed and state-dependent parameters for the median

	IqHMM		IqHMM+LDO	
# Par	36		33	
Log-L	-1082.530		-1018.042	
BIC	2377.802		2231.139	
α_1	5.628	(5.074; 5.753)	6.043	(5.931; 6.114)
α_2	6.198	(6.014; 6.252)	6.416	(6.323; 6.502)
α_3	6.524	(6.393; 6.574)	6.719	(6.647; 6.825)
α_4	6.805	(6.719; 6.874)	7.040	(6.973; 7.215)
α_5	7.191	(7.084; 7.291)	-	
Age	-0.003	(-0.007;0.005)	0.004	(-0.001; 0.007)
Drugs	0.036	(-0.016; 0.110)	0.072	(-0.006; 0.145)
Packs	0.049	(0.014; 0.068)	0.042	(0.014; 0.054)
Partners	0.002	(-0.003; 0.012)	0.005	(0.000; 0.012)
CESD	-0.005	(-0.007;-0.001)	-0.004	-(-0.006 -0.002)
$Time_{sero}$	-0.110	(-0.126; -0.084)	-0.146	(-0.175; -0.119)

- Under IgHMM, a further hidden state is needed
- State-specific intercepts identify increasing CD4 count levels
- Packs of cigarettes and number of sexual partners have a positive effect, while age and drug use play no role. More sever depression symptoms lead to decreasing CD4 counts
- CD4 counts decrease as the time since seroconversion increases

LDO class parameters

In the longitudinal data model

<i>b</i> ₁	<i>b</i> ₂	<i>b</i> ₃	<i>b</i> ₄
-0.497	-0.176	-0.070	0.033
(-0.667 -0.452)	(-0.200 -0.155)	(-0.098 -0.056)	(-0.023 0.047)

The decrease in CD4 counts over time progressively reduces when moving towards higher LDO classes

In the LDO class model

λ_{01}	λ_{02}	λ_{03}	λ_1
-1.062	1.113	4.089	-0.193
(-2.112; -0.241)	(0.013; 2.102)	(2.002; 5.299)	(-0.318; -0.065)

When the length of the observation window increases, the probability of "higher" categories increases

Individual trajectories

Concluding remarks

- Sources of unobserved heterogeneity are modelled via a hidden Markov chain
- Bias in the parameter estimates is avoided considering the LDO class variable
- Clustering of units in homogeneous LDO classes offers a clearer interpretation of results
- The semi-parametric nature of the latent variables ensures model flexibility

Basic References

- Bartolucci, F., Farcomeni, A., and Pennoni, F. Latent Markov Models for Longitudinal Data. Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences. Taylor & Francis, 2012.
- Baum, L. E., Petrie, T., Soules, G., and Weiss, N. A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains. *The annals of mathematical statistics*, pages 164–171, 1970.
- Dempster, A., Laird, N. M., and Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B, 39(1):1–38, 1977.
- Farcomeni, A. Quantile regression for longitudinal data based on latent Markov subject-specific parameters. Statistics and Computing, 22, 2012.
- Geraci, M. and Bottai, M. Quantile regression for longitudinal data using the asymmetric laplace distribution. *Biostatistics*, 8 (1):140–54, 2007.
- Heckman, J. J. The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. In Annals of Economic and Social Measurement, Volume 5, number 4, pages 475–492. NBER, 1976.
- Lahiri, S. N. Theoretical comparisons of block bootstrap methods. Annals of Statistics, pages 386-404, 1999.
- Little, R. J. A. Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association, 88 (421):125–134, 1993.
- Little, R. J. and Rubin, D. B. Statistical analysis with missing data. Wiley, 2002.
- Marino, M. F., Tzavidis, N., and Alfo, M. Quantile regression for longitudinal data: unobserved heterogeneity and informative missingness. arXiv preprint arXiv:1501.02157, 2015.
- Rizopoulos, D. Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive gaussian quadrature rule. Computational Statistics & Data Analysis, 56(3):491–501, 2012.
- Roy, J. Modeling longitudinal data with nonignorable dropouts using a latent dropout class model. Biometrics, 59(4):829–836, 2003.
- Roy, J. and Daniels, M. J. A general class of pattern mixture models for nonignorable dropout with many possible dropout times. Biometrics, 64(2):538–545, 2008.
- Wu, M. C. and Carroll, R. J. Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. *Biometrics*, pages 175–188, 1988.