M-quantiles for binary and categorical data

James Dawber

University of Wollongong, Australia
15 July, 2016

Research question

Can quantile-like regression be applied to categorical response data?

Outline

(1) M-quantiles for continuous response
(2) Uses in small area estimation
(Current methods for M-quantiles for binary response
(1) An alternative method for binary responses
(0) Extending to categorical responses
(0) Small area estimation with binary response
(3) Small area estimation with categorical response
(B) An example - unemployment in the UK

Quantiles, expectiles and something in between...

$$
\rho_{q}(\epsilon)=\left[(1-q) \mathbb{I}_{(\epsilon \leq 0)}+q \mathbb{I}_{(\epsilon>0)}\right] \rho(\epsilon)
$$

$$
\boldsymbol{\epsilon}=\frac{\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}_{\boldsymbol{q}}}{\sigma_{q}}
$$

Quantiles, expectiles and something in between...

$$
\rho_{q}(\epsilon)=\left[(1-q) \mathbb{I}_{(\epsilon \leq 0)}+q \mathbb{I}_{(\epsilon>0)}\right] \rho(\epsilon)
$$

$$
\boldsymbol{\epsilon}=\frac{\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}_{\boldsymbol{q}}}{\sigma_{q}}
$$

Quantile

Minimise $\sum \rho_{q}(\epsilon)$ where
$\rho(\epsilon) \propto|\epsilon|$

Quantiles, expectiles and something in between...

$$
\rho_{q}(\epsilon)=\left[(1-q) \mathbb{I}_{(\epsilon \leq 0)}+q \mathbb{I}_{(\epsilon>0)}\right] \rho(\epsilon)
$$

$$
\boldsymbol{\epsilon}=\frac{\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}_{\boldsymbol{q}}}{\sigma_{q}}
$$

Quantile

Minimise $\sum \rho_{q}(\epsilon)$ where $\rho(\epsilon) \propto|\epsilon|$

Expectile

Minimise $\sum \rho_{q}(\epsilon)$ where $\rho(\epsilon) \propto \epsilon^{2}$

Quantiles, expectiles and something in between...

$$
\rho_{q}(\epsilon)=\left[(1-q) \mathbb{I}_{(\epsilon \leq 0)}+q \mathbb{I}_{(\epsilon>0)}\right] \rho(\epsilon)
$$

$$
\boldsymbol{\epsilon}=\frac{\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}_{\boldsymbol{q}}}{\sigma_{q}}
$$

Quantile

Minimise $\sum \rho_{q}(\epsilon)$ where $\rho(\epsilon) \propto|\epsilon|$

Expectile

Minimise $\sum \rho_{q}(\epsilon)$ where $\rho(\epsilon) \propto \epsilon^{2}$

Huber M-quantile

Minimise $\sum \rho_{q, k}(\epsilon)$ where

$$
\rho(\epsilon, k) \propto \begin{cases}\epsilon^{2}, & \text { if }|\epsilon|<k \\ |\epsilon|, & \text { if }|\epsilon| \geq k\end{cases}
$$

M-quantiles - uses in Small Area Estimation

M-quantiles - uses in Small Area Estimation

M-quantiles - uses in Small Area Estimation

Farm Value (log \$)

M-quantiles - uses in Small Area Estimation

M-quantiles - uses in Small Area Estimation

Farm Value (log \$)

M-quantiles with continuous data

(1) Huber M-quantiles are M-estimators with influence function:

$$
\psi_{q, k}(x)= \begin{cases}-2(1-q) k, & \text { if } x<-k \\ 2(1-q) x, & \text { if }-k \leq x \leq 0 \\ 2 q x, & \text { if } 0<x \leq k \\ 2 q k, & \text { if } x>k\end{cases}
$$

(2) As $k \rightarrow 0$ we get the quantile and as $k \rightarrow \infty$ we get the expectile influence function.
(0) So with continuous Y we obtain the M-quantile estimate $M_{q, k}$ by solving:

$$
E\left[\psi_{q, k}\left(\frac{Y-M_{q, k}}{\sigma_{q}}\right)\right]=0 .
$$

(9) Where σ_{q} is a scale estimator which ensures scale equivariance of $M_{q, k}$.

M-quantiles with binary data

(1) Quantiles for binary data are very difficult, but M-quantiles and expectiles are nice.
(2) With binary Y we obtain M-quantile estimate according to Chambers et al (2015):

$$
E\left[\psi_{q, k}\left(\frac{Y-M_{q, k}}{\sigma\left(M_{q, k}\right)}\right) \sigma\left(M_{q, k}\right)-\alpha\right]=0
$$

Where $\sigma\left(M_{q, k}\right)=\sqrt{M_{q, k}\left(1-M_{q, k}\right)}$ and α is a correction term for consistency.
(3) Just extend this to categorical data with more than two groups?
(4) Is there another way?

Binary expectile calculation

Suppose we have $Y \sim \operatorname{Bernoulli}(\pi)$, then a simplified binary expectile μ_{q} is found by solving:

$$
E\left[\psi_{q, k=\infty}\left(Y-\mu_{q}\right)\right]=0
$$

$$
\begin{aligned}
0 & =E\left[2(1-q)\left(Y-\mu_{q}\right) I_{Y \leq \mu_{q}}+2 q\left(Y-\mu_{q}\right) I_{Y>\mu_{q}}\right] \\
& =\sum_{y=0}^{1}\left[2(1-q)\left(y-\mu_{q}\right) I_{y \leq \mu_{q}}+2 q\left(y-\mu_{q}\right) I_{y>\mu_{q}}\right] \operatorname{Pr}(Y=y) \\
& =2(1-q)\left(0-\mu_{q}\right)(1-\pi)+2 q\left(1-\mu_{q}\right) \pi \\
& =-2(1-q) \mu_{q}(1-\pi)+2 q\left(1-\mu_{q}\right) \pi
\end{aligned}
$$

which rearranges to:

$$
\mu_{q}=\frac{\pi q}{(1-\pi)(1-q)+\pi q}
$$

Binary expectile properties

$$
\mu_{q}=\frac{\pi q}{(1-\pi)(1-q)+\pi q}
$$

Some of the properties of μ_{q} include:
(1) $\mu_{q} \rightarrow 0$ as $q \rightarrow 0$ or $\pi \rightarrow 0$.
(2) $\mu_{q} \rightarrow 1$ as $q \rightarrow 1$ or $\pi \rightarrow 1$.
(3) $\mu_{q}=\pi$ when $q=0.5$.
(4) $1-\mu_{q}(Y)=\mu_{1-q}(1-Y)$.
(5) When $\pi+q=1, \mu_{q}=0.5$.

Binary expectile regression

We can use estimates of π to get μ_{q}.

$$
\pi=\frac{\exp (X \beta)}{1+\exp (X \beta)}
$$

which gives estimates of μ_{q} :

$$
\mu_{q}=\frac{\left.\exp \left(X \beta+\log \frac{q}{1-q}\right)\right)}{1+\exp \left(X \beta+\log \frac{q}{1-q}\right)}
$$

Binary expectile regression example

Categorical expectile regression

If instead of two categorical groups we have J groups then we can use estimates of π_{j} to get $\mu_{q j}$.

$$
\begin{aligned}
\pi_{j} & =\frac{\exp \left(X \beta_{j}\right)}{1+\sum_{j=1}^{J-1} \exp \left(X \beta_{j}\right)} \\
\pi_{J} & =\frac{1}{1+\sum_{j=1}^{J-1} \exp \left(X \beta_{j}\right)}
\end{aligned}
$$

which gives estimates of $\mu_{q j}$:

$$
\begin{aligned}
\mu_{q j} & =\frac{\exp \left(X \beta_{j}+\log \frac{q}{1-q}\right)}{1+\sum_{j=1}^{J-1} \exp \left(X \beta_{j}\right)-\exp \left(X \beta_{j}\right)+\exp \left(X \beta_{j}+\log \frac{q}{1-q}\right)} \\
\mu_{q J} & =\frac{1}{1+\sum_{j=1}^{J-1} \exp \left(X \beta_{j}+\log \frac{1-q}{q}\right)}
\end{aligned}
$$

Categorical expectile regression example

Categorical expectile regression example

Categorical expectile regression example

Continuous expectile q-values

Continuous expectile q-values

Continuous expectile q-values

Binary expectile q-values - swap groups

Binary expectile q-values

Categorical expectile q-values

Categorical expectile q-values

Categorical expectile q-values

Example - unemployment in UK

(5)					ONS LFS Dotacs - Mic	rosoft Exel non-commerid			- $\square \times$
	Home insent	Prge lajour	ut formuas	Renew					-0.0x
	\downarrow calops $\$$ Format Painter lipboard	$\begin{aligned} & \text { Calibr } \\ & \text { II } I \underline{\underline{\mathbf{n}}} \\ & \hline \end{aligned}$		$\begin{array}{r} \equiv \equiv \equiv \\ \equiv \equiv \equiv \\ \equiv \equiv \end{array}$					
	${ }^{1} 1$	(6) f							F
-	A	B	C	D	E	F	G	H	-
1	UALAD	GOR	CLUSTER	SEXAGE	UNEMPLOYED	EMPLOYED	INACTIVE	CELLPOP	Registered Unemployed
2	379	7	6	1	5	35	16	14944	753
3	379	7	6	2	2	35	11	13035	285
4	379	7	6	3	8	143	8	41217	1992
5	379	7	6	4	9	153	26	42817	471
6	379	7	6	5	4	51	69	27791	438
7	379	7	6	6	3	41	104	33139	112
8	380	7	1	1	6	30	12	12641	465
9	380	7	1	2	3	32	12	12509	197
10	380	7	1	3	4	138	8	38006	1111
11	380	7	1	4	6	121	51	40196	339
12	380	7	1	5	0	87	68	34613	411

Example - unemployment in UK

Example - unemployment in UK

Example - unemployment in UK

Binary M-quantile

Suppose we have $Y \sim \operatorname{Bernoulli}(\pi)$, then the binary M-quantile is:

$$
E\left[\psi_{q, k}\left(Y-M_{q, k}\right)\right]=0
$$

which can be solved and expressed as:

$$
\mu_{q, k}= \begin{cases}\frac{q \pi}{(1-q)(1-\pi)+q \pi}, & \text { if } \mu_{q, k}<k \cap \mu_{q, k}>1-k \\ \frac{k q \pi}{(1-q)(1-\pi)}, & \text { if } \mu_{q, k}<k \cap \mu_{q, k}<1-k \\ 1-\frac{k(1-q)(1-\pi)}{q \pi}, & \text { if } \mu_{q, k}>k \cap \mu_{q, k}>1-k\end{cases}
$$

Binary M-quantile

Categorical M-quantile

Categorical M-quantile

Categorical M-quantile

