M-quantiles for binary and categorical data

James Dawber

University of Wollongong, Australia

15 July, 2016

Research question

Can quantile-like regression be applied to categorical response data?

Outline

- M-quantiles for continuous response
- Uses in small area estimation
- Ourrent methods for M-quantiles for binary response
- An alternative method for binary responses
- Extending to categorical responses
- Small area estimation with binary response
- Small area estimation with categorical response
- An example unemployment in the UK

$$\rho_{q}(\epsilon) = \left[(1-q)\mathbb{I}_{(\epsilon \leq 0)} + q\mathbb{I}_{(\epsilon > 0)} \right] \rho(\epsilon)$$

 $\varepsilon = \frac{\mathbf{y} - \mathbf{X}\boldsymbol{\beta}_{\mathbf{q}}}{\sigma_{\mathbf{q}}}$

$$\rho_q(\epsilon) = \left[(1-q) \mathbb{I}_{(\epsilon \leq 0)} + q \mathbb{I}_{(\epsilon > 0)} \right] \rho(\epsilon)$$

$$\epsilon = rac{\mathbf{y} - \mathbf{X}eta_{\mathbf{q}}}{\sigma_{\mathbf{q}}}$$

Quantile

Minimise $\sum \rho_q(\epsilon)$ where $\rho(\epsilon) \propto |\epsilon|$

$$\rho_q(\epsilon) = \left[(1-q)\mathbb{I}_{(\epsilon \leq 0)} + q\mathbb{I}_{(\epsilon > 0)} \right] \frac{\rho(\epsilon)}{\rho(\epsilon)}$$

$$\epsilon = rac{\mathbf{y} - \mathbf{X}eta_{\mathbf{q}}}{\sigma_{\mathbf{q}}}$$

Quantile

Minimise $\sum \rho_q(\epsilon)$ where $\rho(\epsilon) \propto |\epsilon|$

Expectile

Minimise $\sum \rho_q(\epsilon)$ where $\rho(\epsilon) \propto \epsilon^2$

$$\rho_q(\epsilon) = \left[(1-q)\mathbb{I}_{(\epsilon \leq 0)} + q\mathbb{I}_{(\epsilon > 0)} \right] \rho(\epsilon)$$

$$\epsilon = rac{\mathbf{y} - \mathbf{X}oldsymbol{eta_q}}{\sigma_q}$$

Quantile

Minimise $\sum \rho_q(\epsilon)$ where $\rho(\epsilon) \propto |\epsilon|$

Expectile

Minimise $\sum \rho_q(\epsilon)$ where $\rho(\epsilon) \propto \epsilon^2$

Huber M-quantile

Minimise $\sum \rho_{q,k}(\epsilon)$ where

$$\rho(\epsilon, k) \propto \begin{cases} \epsilon^2, & \text{if } |\epsilon| < k \\ |\epsilon|, & \text{if } |\epsilon| \ge k \end{cases}$$

7/31

8/31

9/31

M-quantiles with continuous data

• Huber M-quantiles are M-estimators with influence function:

$$\psi_{q,k}(x) = \begin{cases} -2(1-q)k, & \text{if } x < -k \\ 2(1-q)x, & \text{if } -k \le x \le 0 \\ 2qx, & \text{if } 0 < x \le k \\ 2qk, & \text{if } x > k \end{cases}$$

- ② As $k \to 0$ we get the quantile and as $k \to \infty$ we get the expectile influence function.
- So with continuous Y we obtain the M-quantile estimate $M_{q,k}$ by solving:

$$E\left[\psi_{q,k}\left(\frac{Y-M_{q,k}}{\sigma_q}\right)\right]=0.$$

Where σ_q is a scale estimator which ensures scale equivariance of $M_{q,k}$.

M-quantiles with binary data

- Quantiles for binary data are very difficult, but M-quantiles and expectiles are nice.
- With binary Y we obtain M-quantile estimate according to Chambers et al (2015):

$$E\left[\psi_{q,k}\left(\frac{Y-M_{q,k}}{\sigma(M_{q,k})}\right)\sigma(M_{q,k})-\alpha\right]=0.$$

Where $\sigma(M_{q,k}) = \sqrt{M_{q,k}(1 - M_{q,k})}$ and α is a correction term for consistency.

- Just extend this to categorical data with more than two groups?
- Is there another way?

Binary expectile calculation

Suppose we have $Y \sim Bernoulli(\pi)$, then a simplified binary expectile μ_q is found by solving:

$$E\left[\psi_{q,k=\infty}(Y-\mu_q)\right]=0$$

$$0 = E \left[2(1-q)(Y-\mu_q)I_{Y \leq \mu_q} + 2q(Y-\mu_q)I_{Y > \mu_q} \right]$$

$$= \sum_{y=0}^{1} \left[2(1-q)(y-\mu_q)I_{y \leq \mu_q} + 2q(y-\mu_q)I_{y > \mu_q} \right] Pr(Y=y)$$

$$= 2(1-q)(0-\mu_q)(1-\pi) + 2q(1-\mu_q)\pi$$

$$= -2(1-q)\mu_q(1-\pi) + 2q(1-\mu_q)\pi$$

which rearranges to:

$$\mu_{\mathbf{q}} = \frac{\pi \mathbf{q}}{(1-\pi)(1-\mathbf{q}) + \pi \mathbf{q}}.$$

Binary expectile properties

$$\mu_q = \frac{\pi q}{(1-\pi)(1-q)+\pi q}.$$

Some of the properties of μ_q include:

- $lackbox{0} \mu_q
 ightarrow 0$ as q
 ightarrow 0 or $\pi
 ightarrow 0$.
- 2 $\mu_q \rightarrow$ 1 as $q \rightarrow$ 1 or $\pi \rightarrow$ 1.
- **3** $\mu_q = \pi$ when q = 0.5.
- **1** When $\pi + q = 1$, $\mu_q = 0.5$.

Binary expectile regression

We can use estimates of π to get μ_q .

$$\pi = \frac{\exp(X\beta)}{1 + \exp(X\beta)}$$

which gives estimates of μ_q :

$$\mu_q = \frac{\exp(X\beta + \log \frac{q}{1-q}))}{1 + \exp(X\beta + \log \frac{q}{1-q})}$$

Binary expectile regression example

Categorical expectile regression

If instead of two categorical groups we have J groups then we can use estimates of π_j to get μ_{qj} .

$$\pi_{j} = \frac{\exp(X\beta_{j})}{1 + \sum_{j=1}^{J-1} \exp(X\beta_{j})}$$
$$\pi_{J} = \frac{1}{1 + \sum_{j=1}^{J-1} \exp(X\beta_{j})}$$

which gives estimates of μ_{qj} :

$$\mu_{qj} = \frac{\exp(X\beta_j + \log\frac{q}{1-q})}{1 + \sum_{j=1}^{J-1} \exp(X\beta_j) - \exp(X\beta_j) + \exp(X\beta_j + \log\frac{q}{1-q})}$$

$$\mu_{qJ} = \frac{1}{1 + \sum_{j=1}^{J-1} \exp(X\beta_j + \log\frac{1-q}{q})}$$

Categorical expectile regression example

Categorical expectile regression example

Categorical expectile regression example

Continuous expectile q-values

Continuous expectile q-values

Continuous expectile q-values

Binary expectile q-values - swap groups

Categorical expectile q-values

Categorical expectile q-values

Categorical expectile q-values

Binary M-quantile

Suppose we have $Y \sim Bernoulli(\pi)$, then the binary M-quantile is:

$$E\left[\psi_{q,k}(Y-M_{q,k})\right]=0$$

which can be solved and expressed as:

$$\mu_{q,k} = \begin{cases} \frac{q\pi}{(1-q)(1-\pi)+q\pi}, & \text{if } \mu_{q,k} < k \cap \mu_{q,k} > 1-k \\ \frac{kq\pi}{(1-q)(1-\pi)}, & \text{if } \mu_{q,k} < k \cap \mu_{q,k} < 1-k \\ 1 - \frac{k(1-q)(1-\pi)}{q\pi}, & \text{if } \mu_{q,k} > k \cap \mu_{q,k} > 1-k \end{cases}$$

Binary *M*-quantile

Categorical M-quantile

Categorical M-quantile

Categorical M-quantile

