Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi ¹ E. Fabrizi² N. Salvati³ N. Tzavidis⁴

¹Università degli Studi di Bergamo

²Università Cattolica del S. Cuore

³Università di Pisa

⁴University of Southampton

July 15, 2016

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi, E. Fabrizi, N. Salvati, N. Tzavidis • OLS regression models the conditional expectation of a r.v. $E(Y|\mathbf{x}) = \mathbf{x}^T \boldsymbol{\beta}$

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨ - の々で

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis • OLS regression models the conditional expectation of a r.v. $E(Y|\mathbf{x}) = \mathbf{x}^T \boldsymbol{\beta}$

Often it is not sufficient to do this because

• the mean is not an adequate summary of the distribution

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

it is not outlier robust

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis • OLS regression models the conditional expectation of a r.v. $E(Y|\mathbf{x}) = \mathbf{x}^T \boldsymbol{\beta}$

Often it is not sufficient to do this because

• the mean is not an adequate summary of the distribution

- it is not outlier robust
- Quantile regression models the quantiles of the conditional distribution $F_Y^{-1}(\tau | \mathbf{x}) = \mathbf{x}^T \boldsymbol{\beta}_{\tau}$

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis ■ OLS regression models the conditional expectation of a r.v. E(Y|x) = x^Tβ

Often it is not sufficient to do this because

• the mean is not an adequate summary of the distribution

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- it is not outlier robust
- Quantile regression models the quantiles of the conditional distribution $F_Y^{-1}(\tau | \mathbf{x}) = \mathbf{x}^T \boldsymbol{\beta}_{\tau}$

Solutions of estimating equations are not unique

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis OLS regression models the conditional expectation of a r.v. E(Y|x) = x^Tβ

Often it is not sufficient to do this because

- the mean is not an adequate summary of the distribution
- it is not outlier robust
- Quantile regression models the quantiles of the conditional distribution F⁻¹_Y(τ|x) = x^Tβ_τ
 Solutions of estimating equations are not unique
- More general approach is M-quantile regression (combines robustness properties of quantiles with the efficiency properties of mean regression)

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis

M-quantile of order
$$au \in (0,1)$$
:

$$MQ_{\tau}(y_i|\mathbf{x}_i) = \mathbf{x}_i^T \beta_{\tau}$$

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis

M-quantile of order
$$au \in (0,1)$$
:

$$MQ_{\tau}(y_i|\mathbf{x}_i) = \mathbf{x}_i^T \beta_{\tau}$$

• β_{τ} is estimated by $\hat{\beta}_{\tau} = \operatorname{argmin} \sum_{i=1}^{n} \rho_{\tau} \left(\frac{y_i - \mathbf{x}_i^T \beta}{\hat{\sigma}_{\tau}} \right)$

• $\hat{\sigma}_{\tau}$ is a robust estimate of scale

э.

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis

M-quantile of order
$$au \in (0,1)$$
:

$$MQ_{\tau}(y_i|\mathbf{x}_i) = \mathbf{x}_i^T \beta_{\tau}$$

$$\begin{array}{l} \boldsymbol{\beta}_{\tau} \text{ is estimated by} \\ \boldsymbol{\hat{\beta}}_{\tau} = \operatorname{argmin} \sum_{i=1}^{n} \rho_{\tau} \left(\frac{y_i - \mathbf{x}_i^T \boldsymbol{\beta}}{\hat{\sigma}_{\tau}} \right) \end{array}$$

- $\hat{\sigma}_{\tau}$ is a robust estimate of scale
- $\rho_{\tau}(u) = |\tau I(u < 0)|\rho(u)$
- Huber loss function:

$$\rho(u) = 2 \begin{cases} (c|u| - c^2/2) & |u| > c \\ u^2/2 & |u| \le c \end{cases}$$

0 10 20

< 🗇 🕨

Mean regression

xx = • • = •

э

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

General background

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Chambers and Tzavidis (2006) apply MQ to Small Area Estimation problems

Since then a number of papers has been published

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨ - の々で

General background

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Chambers and Tzavidis (2006) apply MQ to Small Area Estimation problems

Since then a number of papers has been published

Gap-Criticism: lack of model diagnostics and hypotheses testing tools for model selection

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis

Expand available toolkit for inference in MQ regression

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Expand available toolkit for inference in MQ regression

■ Pseudo-*R*² goodness-of-fit measure

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Expand available toolkit for inference in MQ regression

- Pseudo-R² goodness-of-fit measure
- LR-type test for linear hypotheses

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨ - の々で

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Expand available toolkit for inference in MQ regression

- Pseudo-*R*² goodness-of-fit measure
- LR-type test for linear hypotheses
- Test for the presence of clustering

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Expand available toolkit for inference in MQ regression

- Pseudo-*R*² goodness-of-fit measure
- LR-type test for linear hypotheses
- Test for the presence of clustering
- Data-driven tuning parameter selection in Huber influence function

and Testing in M-quantile Regression with application to small area estimation

Estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis

Partitioned MQ model:

$$MQ_{\tau}(y_i|\mathbf{x}_i) = \mathbf{x}_{i1}^T \boldsymbol{\beta}_{\tau 1} + \mathbf{x}_{i2}^T \boldsymbol{\beta}_{\tau 2}$$

•
$$\boldsymbol{\beta}_{\tau} = (\boldsymbol{\beta}_{\tau 1}^{T}, \boldsymbol{\beta}_{\tau 2}^{T})^{T}$$
, $\boldsymbol{\beta}_{\tau 1}$ is $(p - k) \times 1$, $\boldsymbol{\beta}_{\tau 2}$ is $k \times 1$
 $(0 < k < p)$

Partitioned MQ model:

$$MQ_{\tau}(y_i|\mathbf{x}_i) = \mathbf{x}_{i1}^T \boldsymbol{\beta}_{\tau 1} + \mathbf{x}_{i2}^T \boldsymbol{\beta}_{\tau 2}$$

$$\boldsymbol{\beta}_{\tau} = (\boldsymbol{\beta}_{\tau 1}^{\mathsf{T}}, \boldsymbol{\beta}_{\tau 2}^{\mathsf{T}})^{\mathsf{T}}, \, \boldsymbol{\beta}_{\tau 1} \text{ is } (p-k) \times 1, \, \boldsymbol{\beta}_{\tau 2} \text{ is } k \times 1 \\ (0 < k < p)$$

• $\hat{oldsymbol{eta}}_{ au}$ MQ estimator of the full model

• $\tilde{\boldsymbol{\beta}}_{\tau} = (\tilde{\boldsymbol{\beta}}_{\tau 1}^{T}, \mathbf{0}^{T})^{T}$ MQ estimator under the restriction $\boldsymbol{\beta}_{\tau 2} = \mathbf{0}$

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Relative goodness-of-fit measure comparing the unrestricted to the restricted MQ regression model

$$R_{\rho}^{2}(\tau) = 1 - \frac{\sum_{i=1}^{n} \rho_{\tau} \left(\frac{y_{i} - \mathbf{x}_{i}^{T} \hat{\boldsymbol{\beta}}_{\tau}}{\hat{\sigma}_{\tau}} \right)}{\sum_{i=1}^{n} \rho_{\tau} \left(\frac{y_{i} - \mathbf{x}_{i}^{T} \tilde{\boldsymbol{\beta}}_{\tau}}{\hat{\sigma}_{\tau}} \right)}$$

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨ - の々で

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Relative goodness-of-fit measure comparing the unrestricted to the restricted MQ regression model

$$R_{\rho}^{2}(\tau) = 1 - \frac{\sum_{i=1}^{n} \rho_{\tau} \left(\frac{y_{i} - \mathbf{x}_{i}^{T} \hat{\boldsymbol{\beta}}_{\tau}}{\hat{\sigma}_{\tau}} \right)}{\sum_{i=1}^{n} \rho_{\tau} \left(\frac{y_{i} - \mathbf{x}_{i}^{T} \tilde{\boldsymbol{\beta}}_{\tau}}{\hat{\sigma}_{\tau}} \right)}$$

- When the restricted model includes only the intercept, this measure is the natural analog of the usual R² goodness-of-fit measure used in mean regression
- It varies between 0 and 1 and it represents a measure of goodness-of-fit for a specified τ

Testing linear hypotheses

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Model:

 $MQ_{\tau}(y_i|\mathbf{x}_i) = \mathbf{x}_{i1}^T \boldsymbol{\beta}_{\tau 1} + \mathbf{x}_{i2}^T \boldsymbol{\beta}_{\tau 2}$

Hypotheses:

$$H_0: \boldsymbol{\beta}_{\tau 2} = \mathbf{0}$$
$$H_A: \boldsymbol{\beta}_{\tau 2} \neq \mathbf{0}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

Testing linear hypotheses

Model:

$$MQ_{\tau}(y_i|\mathbf{x}_i) = \mathbf{x}_{i1}^T \boldsymbol{\beta}_{\tau 1} + \mathbf{x}_{i2}^T \boldsymbol{\beta}_{\tau 2}$$

Hypotheses:

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis

Estimation

and Testing in M-quantile Regression with application to

small area estimation

$$H_0: \boldsymbol{\beta}_{\tau 2} = \mathbf{0}$$
$$H_A: \boldsymbol{\beta}_{\tau 2} \neq \mathbf{0}$$

Test statistic (under H_0 , provided assumptions verified):

$$-2\frac{(n-p)^{-1}\sum_{i=1}^{n}\hat{\psi}_{\tau i}^{\prime}}{n^{-1}\sum_{i=1}^{n}\hat{\psi}_{\tau i}^{2}}\left[\sum_{i=1}^{n}\rho_{\tau}\left(\frac{y_{i}-\mathbf{x}_{i}^{T}\hat{\boldsymbol{\beta}}_{\tau}}{\hat{\sigma}_{\tau}}\right)-\sum_{i=1}^{n}\rho_{\tau}\left(\frac{y_{i}-\mathbf{x}_{i}^{T}\tilde{\boldsymbol{\beta}}_{\tau}}{\hat{\sigma}_{\tau}}\right)\right]\overset{d}{\longrightarrow}\chi_{k}^{2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ()

with
$$\hat{\psi}'_{\tau i} := \psi'_{\tau} (\hat{\varepsilon}_{i\tau} / \hat{\sigma}_{\tau}), \ \hat{\psi}_{\tau i} = \psi_{\tau} (\hat{\varepsilon}_{i\tau} / \hat{\sigma}_{\tau})$$

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

Testing linear hypotheses

Model:

$$MQ_{\tau}(y_i|\mathbf{x}_i) = \mathbf{x}_{i1}^T \boldsymbol{\beta}_{\tau 1} + \mathbf{x}_{i2}^T \boldsymbol{\beta}_{\tau 2}$$

Hypotheses:

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis

Estimation

and Testing in M-quantile Regression with application to

small area estimation

$$H_0: \boldsymbol{\beta}_{\tau 2} = \mathbf{0}$$
$$H_A: \boldsymbol{\beta}_{\tau 2} \neq \mathbf{0}$$

Test statistic (under H_0 , provided assumptions verified):

$$-2\frac{(n-p)^{-1}\sum_{i=1}^{n}\hat{\psi}_{\tau i}^{\prime}}{n^{-1}\sum_{i=1}^{n}\hat{\psi}_{\tau i}^{2}}\left[\sum_{i=1}^{n}\rho_{\tau}\left(\frac{y_{i}-\mathbf{x}_{i}^{T}\hat{\boldsymbol{\beta}}_{\tau}}{\hat{\sigma}_{\tau}}\right)-\sum_{i=1}^{n}\rho_{\tau}\left(\frac{y_{i}-\mathbf{x}_{i}^{T}\tilde{\boldsymbol{\beta}}_{\tau}}{\hat{\sigma}_{\tau}}\right)\right]\overset{d}{\longrightarrow}\chi_{k}^{2}$$

with $\hat{\psi}'_{\tau i} := \psi'_{\tau} (\hat{\varepsilon}_{i\tau} / \hat{\sigma}_{\tau}), \ \hat{\psi}_{\tau i} = \psi_{\tau} (\hat{\varepsilon}_{i\tau} / \hat{\sigma}_{\tau})$

 \rightarrow LR type test

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Suppose we want to test the presence of group effects

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨ - の々で

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Suppose we want to test the presence of group effects

ldea

Characterize heterogeneity in the data using group specific MQ-coefficients

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

= nac

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Suppose we want to test the presence of group effects

ldea

Characterize heterogeneity in the data using group specific MQ-coefficients

- $j = 1, \ldots, d$ group, $i = 1, \ldots, n_j$ unit
- Variable of interest y_{ij}, Unit level covariates **x**_{ij}
- For each group j, τ_j =group specific MQ-coefficient

$$\min_{\tau} E\left[\rho\left(\frac{y_{ij} - \mathbf{x}_{ij}^{T} \boldsymbol{\beta}_{\tau}}{\sigma}\right) | j\right]$$

It is the τ value that corresponds to the MQ plane which is closer to observations from group j, according to metric ρ $\langle \Box \rangle + \langle \Box \rangle +$

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis

Group MQ-coefficient original definition (Chambers and Tzavidis, 2006):

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨ - の々で

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Group MQ-coefficient original definition (Chambers and Tzavidis, 2006):

1 Define MQ-coefficient for each unit, τ_{ij} , s.t.

$$MQ_{ au_{ij}}(y_{ij}|\mathbf{x}_{ij})=y_{ij}$$

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Group MQ-coefficient original definition (Chambers and Tzavidis, 2006):

1 Define MQ-coefficient for each unit, τ_{ij} , s.t.

$$MQ_{\tau_{ij}}(y_{ij}|\mathbf{x}_{ij}) = y_{ij}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Characterize each group *j* by the average of the units MQ-coefficients that belong to that group.

Estimation and Testing in M-quantile Regression with application to small area estimation

Hypotheses:

A. Bianchi, E. Fabrizi, N. Salvati, N. Tzavidis $\begin{aligned} H_0 : \tau_j &= 0.5 \ \forall j = 1, \dots, d \\ H_A : \tau_j &\neq 0.5 \ \text{for at least one } j \end{aligned}$

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨ - の々で

Estimation and Testing in M-quantile Regression with application to small area estimation

Hypotheses:

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis

$$\begin{aligned} H_0 : \tau_j &= 0.5 \ \forall j = 1, \dots, d \\ H_A : \tau_j &\neq 0.5 \ \text{for at least one } j \end{aligned}$$

Test statistic (under H_0 , provided assumptions verified):

 $-2\frac{(n-\rho)^{-1}\sum_{ij}\hat{\psi}_{ij}^{j}}{n^{-1}\sum_{ij}\hat{\psi}_{ij}^{j}}\left[\sum_{j=1}^{d}\sum_{i=1}^{n_{j}}\rho\left(\frac{y_{ij}-\mathbf{x}_{ij}^{T}\hat{\boldsymbol{\beta}}_{\hat{\boldsymbol{\gamma}}_{j}}}{\hat{\sigma}}\right)-\sum_{j=1}^{d}\sum_{i=1}^{n_{j}}\rho\left(\frac{y_{ij}-\mathbf{x}_{ij}^{T}\hat{\boldsymbol{\beta}}_{0.5}}{\hat{\sigma}}\right)\right]\overset{d}{\longrightarrow}\chi_{d-1}^{2}$

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

Estimation and Testing in M-quantile Regression with application to small area estimation

Hypotheses:

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis

$$egin{aligned} \mathcal{H}_0: & au_j = 0.5 \; orall j = 1, \dots, d \ \mathcal{H}_A: & au_j
eq 0.5 ext{ for at least one } J \end{aligned}$$

Test statistic (under H_0 , provided assumptions verified):

$$-2\frac{(n-\rho)^{-1}\sum_{ij}\hat{\psi}'_{ij}}{n^{-1}\sum_{ij}\hat{\psi}'_{ij}}\left[\sum_{j=1}^{d}\sum_{i=1}^{n_j}\rho\left(\frac{y_{ij}-\mathbf{x}_{ij}^T\hat{\beta}_{\hat{\tau}_j}}{\hat{\sigma}}\right)-\sum_{j=1}^{d}\sum_{i=1}^{n_j}\rho\left(\frac{y_{ij}-\mathbf{x}_{ij}^T\hat{\beta}_{0.5}}{\hat{\sigma}}\right)\right]\overset{d}{\longrightarrow}\chi^2_{d-1}$$

・ 通 ト ・ ヨ ト ・ ヨ ト

3

Usefulness in Small Area context: if no area effect, a more efficient estimator may be used (synthetic estimator)

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Huber loss function

$$ho_{ au}(u) = 2 \left\{ egin{array}{c} (c|u| - c^2/2) | au - I(u \leq 0)| & |u| > c \ u^2/2 | au - I(u \leq 0)| & |u| \leqslant c \end{array}
ight.$$

- c determines robustness level (tradeoff robustness-efficiency)
- In general c = 1.345

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Huber loss function

$$ho_{ au}(u) = 2 \left\{ egin{array}{c} (c|u| - c^2/2) | au - I(u \leq 0)| & |u| > c \ u^2/2 | au - I(u \leq 0)| & |u| \leqslant c \end{array}
ight.$$

- c determines robustness level (tradeoff robustness-efficiency)
- In general *c* = 1.345
- Interpret c as a parameter of a proper density

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Asymmetric Least Informative distribution

$$f_{\tau}(y; \mu_{\tau}, \sigma_{\tau}) = \frac{1}{\sigma_{\tau} B_{\tau}} \exp\left\{-\rho_{\tau}\left(\frac{y - \mu_{\tau}}{\sigma_{\tau}}\right)\right\}, -\infty < y < +\infty$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ()

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Asymmetric Least Informative distribution

$$f_{\tau}(y;\mu_{\tau},\sigma_{\tau}) = \frac{1}{\sigma_{\tau}B_{\tau}} \exp\left\{-\rho_{\tau}\left(\frac{y-\mu_{\tau}}{\sigma_{\tau}}\right)\right\}, -\infty < y < +\infty$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• Choose c maximizing log-likelihood function based on $f_{\tau}(y; \mu_{\tau}, \sigma_{\tau})$

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Asymmetric Least Informative distribution

$$f_{\tau}(y; \mu_{\tau}, \sigma_{\tau}) = \frac{1}{\sigma_{\tau} B_{\tau}} exp\left\{-\rho_{\tau}\left(\frac{y - \mu_{\tau}}{\sigma_{\tau}}\right)\right\}, -\infty < y < +\infty$$

- Choose c maximizing log-likelihood function based on $f_{\tau}(y; \mu_{\tau}, \sigma_{\tau})$
- Simulation results: effective in reflecting different levels of contamination in the data

Simulation studies

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Null distributions for the test statistics have been derived asymptotically only. We explored finite sample properties by means of simulations.

Three sets of simulations:

LR-type test

Test for the presence of clusters

Choice of the tuning constant

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

Simulation studies - LR-type test

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Data generated under mixed (random) effects model:

$$y_{ij} = \beta_0 + \beta_1 x_{ij1} + \beta_2 x_{ij2} + \beta_3 x_{ij3} + u_i + \varepsilon_{ij},$$

where $i = 1, ..., n_j$, j = 1, ..., d, **a** $\beta_0 = 0, \beta_1 = 0.5, n_j = 5$ **b** $(\beta_2, \beta_3) \in \{(0, 0), (0.25, 0.25), (0.5, 0.5), (1, 1)\}$ **b** d = 20, 100**c** u_i and ε_{ii} : $N(0, 1), t_3$, and $\chi^2(2)$

Null hypothesis: $H_0: \beta_{\tau 2} = \beta_{\tau 3} = 0$

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

Simulation studies - LR-type test

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis

d		<i>N</i> , $c = 100$			$t_3, c = 1.345$		
	au	0.50	0.75	0.90	0.50	0.75	0.90
	α	$(\beta_2,\beta_3)=(0,0)$					
	0.10	0.110	0.114	0.133	0.103	0.114	0.147
20	0.05	0.059	0.062	0.075	0.050	0.063	0.089
	0.01	0.012	0.015	0.021	0.012	0.016	0.030
	0.10	0.101	0.105	0.109	0.102	0.108	0.122
100	0.05	0.052	0.058	0.058	0.052	0.053	0.063
	0.01	0.010	0.011	0.012	0.013	0.012	0.017

Type I error very close to the nominal level

small deviations in the case of $\tau = 0.9$ in the t_3 (and $\chi^2(2)$) with d = 20 (n = 100) where the test turns out to be slightly conservative

Simulation studies - LR-type test

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Power analysis:

- Gaussian scenario: the power of the test tends to 1 as soon as the values of β₂ and β₃ increase for both sample sizes.
- t_3 scenario: the value of the power of the test tends to 1 at $\tau = 0.5$ and 0.75 once the $\beta_2, \beta_3 = 0.25$ especially for d = 100. At $\tau = 0.9$ the likelihood ratio type test performs well as regression coefficients increase (as soon as $\beta_2, \beta_3 = 0.5$).

Simulation studies - Test for clusters

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Data generated under mixed (random) effects model:

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + u_i + \varepsilon_{ij},$$

where $i = 1, ..., n_j$, j = 1, ..., d, $\beta_0 = 1$, $\beta_1 = 2$, $x \sim U(0, 5)$, $\varepsilon_{ij} \sim N(0, 5)$ $u_i \sim N(0, \sigma_u^2)$, with $\sigma_u^2 = 0$, 1, 2.5, 7.5 $n_j = 5, 20, 50$ d = 20, 100

Hypotheses:
$$H_0: \tau_j = 0.5 \ \forall j = 1, \dots, d$$

 $H_A: \tau_j \neq 0.5 \text{ for at least one } j$

イロト 不得 とくほ とくほ とうほう

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

Simulation studies - Test for clusters

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis

- Under the null, Type I error is very close to the nominal value
- As the value of σ_u^2 increases the power of the test increases too
- Power increases more sharply for larger within cluster sample sizes.

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Data generated under mixed (random) effects model:

$$\mathbf{y}_{ij} = \beta_0 + \beta_1 \mathbf{x}_{ij} + \mathbf{u}_i + \varepsilon_{ij},$$

where $i = 1, ..., n_j$, j = 1, ..., d,

• $\beta_0 = 1$, $\beta_1 = 2$, $x \sim U(0,5)$, d = 100, $n_j = 5$

■
$$u_i \sim N(0, 1)$$

• ε_{ij} : N(0, 1), t_3 , $(1 - \gamma)N(0, 1) + \gamma N(0, 25)$ with $Pr(\gamma = 1) = 0.1$, Cauchy with location 0 and scale 1

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

Simulation studies - Tuning constant

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N Salvati, N. Tzavidis

æ

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis ■ Battese et al. (1988) data → predict the hectares of corn and soybean by county (small area)

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis

- Battese et al. (1988) data \rightarrow predict the hectares of corn and soybean by county (small area)
- $y_1 = n$. of hectares of corn, $y_2 = n$. of hectares of soybean
- x₁, x₂ = number of pixels classified as corn / soybean by satellite
- cluster= 12 counties in lowa

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis

- Battese et al. (1988) data \rightarrow predict the hectares of corn and soybean by county (small area)
- $y_1 = n$. of hectares of corn, $y_2 = n$. of hectares of soybean
- x₁, x₂ = number of pixels classified as corn / soybean by satellite
- cluster= 12 counties in Iowa
- Battese et al. (1988) use these data to predict the hectares of corn and soybean by county (using linear mixed random effects model)

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Estimated values for the tuning constant (at $\tau = 0.5$):

• Corn (y_1) : $\hat{c} = 1.94 \rightarrow$ relatively low value, consistent with the presence of outlier identified in Sinha and Rao (2009)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Soybean (y_2): $\hat{c} = 7.85 \rightarrow$ no issue with contamination.

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis

LR-type test

- joint significance of both covariates for modeling y_1 and y_2
- Corn (y₁): after controlling for the n. of pixels classified as corn (x₁), the n. of pixels classified as soybean (x₂) not significant
- Soybean (y₂): after controlling for the n. of pixels classified as soybean (x₂), the n. of pixels classified as corn (x₁) not significant

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis LR-type test

- joint significance of both covariates for modeling y_1 and y_2
- Corn (y₁): after controlling for the n. of pixels classified as corn (x₁), the n. of pixels classified as soybean (x₂) not significant
- Soybean (y₂): after controlling for the n. of pixels classified as soybean (x₂), the n. of pixels classified as corn (x₁) not significant

To validate results, we run the model proposed by Battese et al. and got similar results

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis

Clustering test

- Corn: p-value=0.103 \rightarrow leading to synthetic small area estimation and more efficient estimators
- Soybean: p-value=0.005 \rightarrow presence of clustering

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨ - の々で

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis Clustering test

- Corn: p-value=0.103 \rightarrow leading to synthetic small area estimation and more efficient estimators
- Soybean: p-value=0.005 \rightarrow presence of clustering

Test for the presence of clustering effect in linear mixed model framework confirms results.

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis

- Corn (solid line): R² increases as τ increases
- Soybean (dashed line): almost constant high value for R² at all values of τ

э

(人間) くちり くちり

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

Concluding remarks

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis

- We have expanded the available toolkit for inference in MQ-regression
- The theory can be applied in small area estimation framework to validate MQ models and improve small area estimates

Estimation and Testing in M-quantile Regression with application to small area estimation

A. Bianchi , E. Fabrizi, N. Salvati, N. Tzavidis

Thank you for your attention!

Workshop on "Recent Advances in Quantile and M-quantile Regression", Pisa, 15 July 2016

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで