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Quantile regression (QR)

QR

B simple, robust and distribution free tool for modelling conditional
quantiles of a response variable as a function of some covariates,
see Koenker and Basset (1978), Koenker (2005).

B account for skewness, fat-tails, outliers, truncated and censored
data, and heteroskedasticity, that can shadow the nature of the
dependence between the variable of interest and the covariates.

B appropriate when the underlying model is nonlinear, innovation
terms are non-Gaussian, tail behaviour is of the primary interest
(Lum and Gelfand 2012 and Koenker 2005).

Lp quantiles

B extend quantile methods, see Bignozzi et al. (2016);

B applications in statistics, economics and finance, (Valeria);

B elicitable risk measures (backtesting).
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QR and alternatives...

Quantile regression (Koenker and Bassett, 1978)

B qτ (Y | X = x) = x′β;

B solve the minimisation problem

min
β

n∑
i=1

(
τ − 1(−∞,x′iβ) (yi)

)
(yi − x′iβ)

Asymmetric Least Square regression (ALS) (Newey and Powel, 1987)

B eτ (Y | X = x) = x′β;

B solve the minimisation problem

min
β

n∑
i=1

(
τ − 1(−∞,x′iβ) (yi)

)
(yi − x′iβ)

2

for τ ∈ (0, 1).
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Lp–quantile regression models

Lp-quantiles, ρp,τ , p ≥ 2, τ ∈ (0, 1)

min
β

n∑
i=1

(
τ − 1(−∞,x′iβ) (yi)

)
(yi − x′iβ)

p
.

B introduced by Chen (1996);

B elicitable risk measures;

B L2-quantile corresponds to the expectile, see Bellini et al. (2014);

B for p ∈ (1, 2), Lp–quantiles are MM estimators, see Lange (2010),
Hunter and Lange (2000), Bernardi et al. (2016).
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Bayesian Inference

B Yu and Moyeed (2001) propose to use the Asymmetric Laplace
(AL) distribution to perform Bayesian quantile regression;

B Gerlach et al. (2012) propose to use the Asymmetric Gaussian
(AG) distribution to perform Bayesian expectile regression;

B Robust regression models using Lp quantiles have been
considered by Bernardi et al. (2016).

Goal of the paper

Perform Bayesian inference for Lp–quantile regression models.

Approach

Find a distribution function which extends the AL and AG.
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Goals

Inference
B We introduce a misspecified likelihood for Lp–quantile regression

models;

B we provide a full Bayesian approach for inference on parameters
of Lp–quantile regression models;

B we prove posterior consistency of the Bayesian procedure;

B we perform model selection under dirac spike and slab L1 prior.

B US inflation data (DQMA, Bernardi et al. 2016).
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The Skewed Exponential Power (SEP) distribution
The SEP density function is given by, see Zhu and Zinde-Walsh (2009)

fSEP(y | µ, σ, α, p) =


1
σK(p) exp

(
− 1
p

∣∣y−µ
2ασ

∣∣p) if y ≤ µ
1
σK(p) exp

(
− 1
p

∣∣∣ y−µ
2(1−α)σ

∣∣∣p) if y > µ

B α ∈ (0, 1), σ > 0, p > 0;

B K(p) =
[
2p

1
pΓ
(

1 + 1
p

)]−1
is the normalising constant;

B the location parameter µ coincides with Qα (Y );

B admits a stochastic representation.

Proposition

If U ∼ G
(

1 + 1
p ,

1
p

)
and Y | U = u ∼ U

(
µ− 2ασu

1
p , µ

)
, with

probability α and Y | U = u ∼ U
(
µ, µ+ 2 (1− α)σu

1
p

)
with

probability (1− α), then Y ∼ SEP (µ, σ, p, α).
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SEP (Cont’ed)
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Figure : SEP, pdf, loss and score for different values of p and α.
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Lp–quantiles and SEP

B to solve the minimisation problem for τ ∈ (0, 1)

ρp,τ (Y ) = min
β

n∑
i=1

(
τ − 1(−∞,x′iβ) (yi)

)
(yi − x′iβ)

p

is equivalent to finding the MLE for

L (y | X = x) ∝ exp

− n∑
i=1

1

p

 yi − x′iβ

2
(
1(x′iβ,∞) (yi)− α

)
p ,

for α = τ
1
p

τ
1
p+(1−τ)

1
p

.

Key point

Minimising the empirical loss function for the Lp–quantiles is
equivalent to maximising the likelihood function obtained from an
i.i.d. data sample of the SEP distribution.

9



Lp–quantile regression model

The Model

yi = x′iβα,p + εi, for all i = 1, 2, . . . , n

B y = (y1, y2, . . . , yn) is a random sample of size n;

B xi = (1, x1,i, x2,i, . . . , xq,i)
′

the associated set of q + 1 covariates
for i = 1, 2, . . . , n;

B βα,p =
(
βpα,0, β

p
α,1, . . . , β

p
α,q

)′
is a vector q + 1 unknown regression

parameters;

B εi ∼ SEP (0, σ, α, p), i.i.d., for any i = 1, 2, . . . , n

In particular,
yi | xi ∼ SEP (x′iβα,p, σ, α, p) .
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Prior distributions

Non–informative prior

B π (βp,α, σ̃) ∝ 1, where σ̃ = σp.

B Proper joint posterior: theoretical result.

Informative priors

B βp,α ∼ N (µβ ,Σβ), σ̃ ∼ IG (λσ, ησ).

B Lasso L1 regularised prior: multivariate approach.

B Posterior consistency: theoretical result.

Dirac spike–and–slab prior

B Lasso L1 regularised prior + dirac in zero.

B Stochastic Search Variable Selection algorithm.
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Proper posterior under improper prior

Theorem

Let y = (y1, y2, . . . , yn) be a sample of i.i.d. observations generated by
the linear Lp quantile regression model with q > 1, under the
assumption of improper diffuse prior for the regressor parameters,
i.e., π (β) ∝ 1, then

0 <

∫
β

L (y | X,β, σ)π (β) dβ <∞.

Remark
Under improper prior the Bayesian approach to the Lp quantile
regression model generalises the Bayesian quantile regression
framework of Yu and Moyeed (2001).
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Posterior consistency

Assumptions:

B Let (Y1, Y2, . . . , Yn) be a sequence of independent observations of
a univariate response variable and let (X1, X2, . . . , Xn) be
one–dimensional non–random covariates.

B P0,i denotes the true and unknown probability distribution of Yi,
with the true α–level Lp quantile of order p ∈ N+ given by

Qpα (Yi | Xi) = δ0 + β0Xi,

for α ∈ (0, 1) .

B Suppose that the misspecified model for

Yi ∼ SEP (·, µαi , σ, p, α) ,

with
µαi = δ + βXi,

for i = 1, 2, . . . , n.
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Posterior consistency (Cont’ed)

Result: If the following condition is satisfied

EP0

[
log

(
P0,i (Yi | Xi)

Pα,pi (Yi | Xi, δ0, β0, σ0 = 1)

)]
< +∞,

then

inf
δ,β

EP0

[
log

(
P0,i (Yi | Xi)

Pα,pi (Yi | Xi, δ, β, σ0 = 1)

)]
≥ EP0

[
log

(
P0,i (Yi | Xi)

Pα,pi (Yi | Xi, δ0, β0, σ = 1)

)]
,

for fixed α and p. (BQR, see Sriram et al. 2013).

Proposition

The weak consistency of the posterior follows from the Schwartz
(1965) theorem, since any Kullback–Leibler neighbourhood of the true
density has positive probability.
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The collapsed Gibbs sampler

B Choose the initial parameters value
(
β
(0)
α,p, σ̃(0)

)
.

B Iteratively sampling
(
β
(k)
α,p,u(k), σ̃(k)

)
, for k = 1, 2, . . . from

(i) σ̃(k) ∼ π
(
σ̃ | y,X,β(k−1)

α,p

)
, collapsed step with σ̃ = σp;

(ii) u(k) ∼ π
(
u | y,X,β(k−1)

α,p , σ̃(k)
)

;

(iii) β
(k)
α,p ∼ π

(
βα,p | y,X,u(k), σ̃(k)

)
, by iteratively simulating from

the complete set of full conditionals π
(
β
(j)
α,p | y,X,u(k),β

(−j)
α,p

)
,

for j = 0, 1, . . . , q.

Remark

Steps (i) and (ii) above ensures draws from the conditional posterior
distribution π (σ̃,u | y,X,βp,α), see, Van Dyk and Park (2008), Park
and Van Dyk (2009) and Bernardi et al. (2015).
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Handling sparsity and regressor selection

Let γ = (γ1, γ2, . . . , γq) be the q–dimensional vector where γj = 1 if
the j–th covariate xj = (xj,1, xj,2, . . . , xj,T )

′
, for j = 1, 2, . . . , q is

included as explanatory variable in the regression model and γj = 0,
otherwise.

π (βp,α | Σ,γ, %, ς) = π0

(
β(0)
p,α | ς

)
πSL

(
βγp,α | Σ

) ∏
j:γj=0

πSP

(
β(j)
p,α

)
π0

(
β(0)
p,α | ς

)
= L1

(
β(0)
p,α | 0, ς

)
πSP

(
β(j)
p,α

)
= δ0

(
β(j)
p,α

)
πSL

(
β(γ)
p,α | Σγ ,γ

)
= Lr

(
β(γ)
p,α | Oγ ,Σγ

)
,

where δ0

(
β
(j)
p,α

)
is a point mass at zero and Lr

(
β
(γ)
p,α | Oγ ,Σγ

)
denotes the r–dimensional Laplace distribution with r =

∑q
j=1 γj .
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Handling sparsity and regressor selection (Cont’ed)

B Dirac spike–and–slab L1 prior: Hans (2009, 2010), Bernardi
(2016).

B Alternative: DQMA approach of Bernardi et al. (2016).

B Here a multivariate slab prior accounts for L1 shrinkage and
regression correlation. Marginals are L1.

B Hierarchical prior specification is completed by

% ∼ Be (% | α%, β%)
ς ∼ IG (ς | ψ,$)

Σ | γ ∼ IWr (Σγ | c,Cγ) .

B Stochastic Search Variable Selection (SSVS) algorithm: exploits
conjugacy with data augmentation and the structure of the
conditionals.
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SSVS algorithm
B Choose the initial parameters value

(
β
(0)
p,α, σ̃(0)%(0), ς(0),Σ(0)

)
.

B Iteratively sampling
(
β
(k)
p,α, σ̃(k),u(k),γ(k), %(k), ς(k),Σ(k)

)
, for

k = 1, 2, . . . from

(i) σ̃(k),u(k),β
(k)
p,α, sampled as before with the only difference the FC

of β
(j)
p,α is GH;

(ii) γ
(k)
j ∼
π
(
γj | y,Xγ ,u

(k),β
(γ,k)
p,α , σ̃(k),γ

(k−1)
−j , %(k−1), ς(k−1),Σ(k−1)

)
, for

j = 1, 2, . . . , q, which is Bernoulli with parameter
P (γj = 1) = 1− π̃j with

π̃j =
1

1 + %
1−%Rj

Rj =

∫ βj

β
j

π
(
β(j)
p,α | y,X,u,β(−j)

p,α , σ̃, %, ς,γ
)
dβ(j)

p,α

= F
β
(j)
p,α

(
βj
)
− F

β
(j)
p,α

(
β
j

)
,

(iii) %(k), ς(k),Σ(k), exploits conjugacy.
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Applications

B Melbourne daily maximum temperature;

B New Zealand population dataset;

B Car dataset;

B Forecast VaR of large dimensional financial indexes;

B US inflation data (DQMA, Bernardi et al. 2016).
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Application: US Inflation

Generalised Phillips curve

1. Relevance of covariates to predict current inflation at different
quantile levels

2. Verify empirically whether predictors for high and low inflation
are different or their relevance change over time.

Different quantile levels

The focus on quantiles of the predicted variable helps in discerning
periods characterised by different economic implications and, in
particular, those featured by low and high inflation levels.
Relevant effects:

1. inclusion probability may be different at different τ–levels;

2. those probabilities may substantially change during period of
high inflation with respect to those of low inflation.
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US Inflation (Cont’ed)

Time-variations
The degree of inflation pressure in the economy may have potential
effects on the real side of the economy and on the overall level of
output produced and may influence the business cycle amplitude and
period.

Autoregressive model with exogenous of order M

We extend the ARX(p) of Stock and Watson (1999) and Koop and
Korobilis (2012) to the Lp –quantile framework

qτ (yt,β,γ) = x′t−1β +

M∑
j=1

γjyt−j (1)

where yt = 100 log
(

Pt
Pt−1

)
, with Pt being a price index.
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US Inflation Data

Variable Name

FX CAN/US, GER/US, JPN/US and US/UK
Money M1, M2
Bank loans bank prime loan rate

Commercial and Industrial Loans, All Commercial Banks
Consumer Loans, All Commercial Banks

Interest Rates 30-Year Conventional Mortgage Rate
Bank Prime Loan Rate
3-Month Treasury Bill
10-Year Treasury Constant Maturity Rate
Long-Term Government Bond Yields: 10-year
Moody’s Seasoned Aaa Corporate Bond Yield
Effective Federal Funds Rate
1–Month Certificate of Deposit

Employment Civilian Unemployment Rate
Number of Civilians Unemployed for 15 Weeks & Over
Number of Civilians Unemployed – Less than 5 Weeks
Civilian Labor Force Participation Rate
All Employees: Total nonfarm
All Employees: Total Private Industries

Expectations University of Michigan: Inflation Expectation
University of Michigan: Consumer Sentiment

Real estate Housing Starts Total: New Privately Owned Units Started
New One Family Houses Sold: United States
Real Estate Loans at All Commercial Banks

Production Index of Aggregate Weekly Hours
Industrial Production Index
ISM Manufactoring: PMI Composite Index
ISM Manufacturing: Supplier Deliveries Index
Real personal consumption expenditures
Capacity of Utilization: Total Industry
Motor Vehicle Assemblies: Total motor vehicle assemblies

Oil Spot Oil Price: West Texas Intermediate
Finance SP500 index
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US Inflation (Cont’ed)

Predictor UNRATE MORTG MPRIME CDM1 FEDFUNDS UNEMPL OILPRICE INFEXP

τ = 0.10 ⊥4� ⊥4� – – – ⊥4�F – –
τ = 0.25 – – – – – ⊥4�F – ⊥4�F
τ = 0.50 ⊥4�F ⊥4�F – ⊥4�F ⊥4�F ⊥4�F – ⊥4�F
τ = 0.75 – – – ⊥4�F ⊥4�F ⊥4�F ⊥4�F ⊥4�F
τ = 0.90 – – – ⊥4� ⊥4� – ⊥4�F –

Symbol Legend

⊥ p = 2
4 p = 3
� p = 4
F p = 5
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Discussion and conclusion

Main contributions
B Lp quantile regression model generalises QR and Expectile

regression;

B Bayesian inference and model selection using Spike–and–Slab
LASSO prior;

B optimality of the SEP likelihood (posterior consistency);

B several applications in statistics, economics and finance.

Further research directions

B for p = 1, 2, . . . , we have a sequence of (conditional) quantile
measures;

B relevant regressors depend on τ ∈ (0, 1) as well as on p = 1, 2, . . . ;

B possible solution: p ∼ DP (α0, G), where G ∼ P (λ).
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Thank you for your kind attention!

25



References I

Aigner, D. J., Amemiya, T. and Poirier, D. J. (1976). On
the estimation of production frontiers: Maximum Likelihood
Estimation of the parameters of a discontinuous density function.
Internat. Econom. Rev., 17, 377-396.

Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D.
(1999). Coherent measures of risk. Math. Finance, 9(3), 203–228.

Bellini, F. and Bignozzi, V. (2015). On elicitable risk
measures. Quant. Finance, 15(5), 725-733.

Bernardi, M., Gayraud, G. and Petrella, L. (2015).
Bayesian tail risk interdependence using quantile
regression.Bayesian Anal., 10(3), 553-603.

Bernardi, M., Gayraud, G. and Petrella, L. (2015).
Posterior rate for marginal and conditional quantiles under
asymmetric Laplace distribution misspecification.Working Paper.

26



References II

Bernardi M, Casarin R. Maillet, B. and Petrella L.,
(2016). Dynamic Model Averaging for Bayesian Quantile
Regression. arXiv:1602.00856.

Bernardi M., (2016). Quantile model selection using dirac
spike and slab L1 prior. Working Paper.

Bernardi M., Bottone M. and Petrella L., (2016).
Bayesian Robust Quantile Regression. arXiv:1605.05602.

Chen, Z. (2001). Conditional Lp-quantiles and their application
to the testing of symmetry in non-parametric regression. Statist.
Probab. Lett, 29, 107–115.

Delbaen, F., Bellini, F., Bignozzi, V., Ziegel, J. F.
(2015). On convex risk measures with the CxLS property.
Finance Stoch., forthcoming.

27



References III

Gerlach, R. H., Chen W. S. and Lin, L. (2012). Bayesian
semi-parametric expected shortfall forecasting in financial
markets. Business Analytics Working Paper Series.

Gneiting, T. (2011). Making and evaluating point forecasts. J.
Amer. Statist. Assoc., 106(494), 746–762.

Newey, W. and Powell, J. (1987). Asymmetric least squares
estimation and testing. Econometrica, 55, 819–847.

Koenker, P., (2005). Quantile Regression. Cambridge
University Press, Cambridge.

Koenker, R. and Basset, G. (1978). Regression Quantiles.
Econometrica, 46, 33-50.

Stock, J. and Watson, M., (1999). Forecasting inflation.
Journal of Monetary Economics, 44, pp. 293–335.

28



References IV

Stock, J. and Watson, M., (2007). Why has U.S. inflation
become harder to forecast? Journal of Monetary Credit and
Banking, 39, pp. 3–33.

Yu, K. and Moyeed, R. A. (2001). Bayesian Quantile
Regression. Statist. Probab. Lett, 54, 437–447.

Ziegel, J. (2014). Coherence and elicitability. Math. Finance,
forthcoming.

Zhu, D. and Zinde-Walsh, V. (2009). Properties and
estimation of asymmetric exponential power distribution. J.
Econometrics, 148(1), 86–99.

29


