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Abstract

We will extend dual frame estimation techniques to the case of estimation of pro-
portions when the variable of interest has multinomial outcomes. We describe the joint
distribution of the class indicators by a multinomial logistic model. Logistic gener-
alized regression estimators and model calibration estimators are introduced for class
frequencies in a population by using two different approaches: ”single frame” and ”dual
frame”. Monte Carlo experiments were carried out to compare the efficiency of the pro-
posed procedures in presence of different sets of auxiliary variables. The experiments
indicate that the multinomial logistic formulation yields better results than the classical
estimators for estimating proportions when sample data are obtained from more than
one frame.
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1 Introduction

Usually, sampling theory assumes the existence of only one sampling frame containing all
population units. Then, a probability sample is drawn according to a sampling design
and information collected is used for estimation and inference purposes. To ensure quality
of the results obtained, the sampling frame must contain every single unit of population
of interest (that is, it must be complete) and it must be updated as well. Otherwise,
estimations could be affected by a serious bias due to the non-representativeness of samples
selected. Unfortunately, this is not an easy task: populations are constantly changing, with
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new units entering and exiting the population every few time, so getting a good sampling
frame can be difficult.

The dual frame approach tries to solve the aforementioned problems. This approach
assumes that two frames are available for sampling and that, overall, they cover the entire
target population. A sample is selected from each frame using a, possible different, sampling
design for each frame. Much attention has been devoted to the introduction of different ways
of combining estimates coming from the different frames. See the seminal papers by [5], [3]
[1] [6]. However, these techniques were originally proposed to estimate means and totals
of quantitative variables, and although their extension to the estimation of proportions in
multinomial response variables is possible, it requires further investigation. Questionnaire
items with multinomial outcomes are quite common in public opinion research, marketing
research, and official surveys (estimating the proportion of voters in favour of each political
party, based on a political opinion survey, is just one concrete example of this procedure).
Items where respondents must select one in a series of options can be modeled by a multi-
nomial distribution. [7] present estimators for a proportion which use the logistic regression
estimator.

This paper focuses on the estimation of proportions in multinomial response variables
when data come from two sampling frames. Different estimators for these proportions are
proposed following different approaches and its main properties are studied. A simulation
study is also presented.

2 Estimation of class frequencies in dual frame surveys

We will employ the notation considered in [9]. Let U denote a finite population with N
units, U = {1, . . . , k, . . . , N} and let A and B be two sampling-frames. Let A be the set of
population units in frame A and B the set of population units in frame B. The population
of interest, U , may be divided into three mutually exclusive domains, a = A∩Bc, b = Ac∩B
and ab = A ∩ B. Because the population units in the overlap domain ab can be sampled
in either survey or both surveys, it is convenient to create a duplicate domain ba = B ∩ A,
which is identical to ab = A∩B, to denote the domain in the overlapping area, coming from
frame B. Let N , NA, NB, Na, Nb, Nab, Nba be the number of population units in U , A, B,
a, b, ab, ba, respectively.

In this work we consider the estimation of class frequencies of a discrete response vari-
able. Assume that we collect data form respondents who provide a single choice from a
list of alternatives. We code these alternatives 1, 2, . . . ,m. Therefore, consider a discrete
m-valued survey variable y. The objective is to estimate the frequency distribution of the y
in the population U . To estimate this frequency distribution, we define a class of indicators
zi (i = 1, . . . ,m) such that for each unit k ∈ U zki = 1 if yk = i and zki = 0 otherwise. Our
problem thus, is to estimate the proportions Pi = 1

N

∑
k∈U zki i = 1, 2, . . . ,m.
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We can write

Pi =
1

N
(Zai + ηZabi + (1− η)Zbai + Zbi), (1)

where 0 ≤ η ≤ 1 and Zai =
∑

k∈a zki, Zabi =
∑

k∈ab zki, Zba =
∑

k∈ba zki and Zb =
∑

k∈b zki.
Two probability samples sA and sB are drawn independently from frame A and frame B

of sizes nA and nB, respectively. Each design induces first-order inclusion probabilities πAk

and πBk
, respectively, and sampling weights dAk

= 1/πAk
and dBk

= 1/πBk
. The sample

sA can be post-stratified as sA = sa ∪ sab, where sa = sA ∩ a and sab = sA ∩ (ab). Similarly,
sB = sb ∪ sba, where sb = sB ∩ b and sba = sB ∩ (ba). Note that sab and sba are both from
the same domain ab, but sab is part of the frame A sample and sba is part of the frame B
sample. Then, let s = sA ∪ sB.

The Hartley [5] estimator of Pi i = 1, 2, . . . ,m is given by

P̂Hi(η) =
1

N
(Ẑai + ηẐabi + (1− η)Ẑbai + Ẑai), (2)

where Ẑai =
∑

k∈sa dAkzki is the Horvitz-Thompson estimator for the proportion of domain
a and similarly for the other domains. If we let

d◦k =


dAk if k ∈ sa
ηdAk if k ∈ sab
(1− η)dBk if k ∈ sba
dBk if k ∈ sb

, (3)

then P̂Hi(η) = 1
N (
∑

k∈s d
◦
kzki). Since each domain is estimated by its Horvitz-Thompson

estimator, P̂Hi(η) is an unbiased estimator of Pi for a given η.
The estimator developed by [3] incorporates information regarding the estimation of

Nab to improve over Pi, but has the drawback of not being a linear combination of zi
values, unless using simple random sampling. [12] propose a modification of the estimator
proposed by [3] for simple random sampling to handle complex designs. They introduce
a pseudo maximum likelihood (PML) estimator that does not achieve optimality like the
FB estimator, but it can be written as a linear combination of the observations and the
same set of weights can be used for all variables of interest. Recently, [9] extended the
Pseudo-Empirical-Likelihood approach (PEL) proposed by [13] from one-frame surveys to
dual-frame surveys following a stratification approach.

3 Estimation of class frequencies using multinomial logistic
regression

Auxiliary information is often available in survey sampling. This information, which may
come from past censuses or from other administrative sources, can be used to obtain more
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accurate estimators. Then, other than the values of y for k ∈ s, suppose we also know the
value of the vector of auxiliary variables x

¯k
for k ∈ U . We consider that the population

under study y = (y1, ..., yN )′ is the determination of a set of super-population random
variables Y = (Y1, ..., YN )′ s.t.

µki = P (Yk = i|x
¯k

) = E(Zki|x
¯k

) =
exp(x

¯
T
k βi)∑

r=1,...,m exp(x
¯
T
krβr)

+ eki, i = 1, ..,m,

that is, we use the multinomial logistic model to relate the variables y and x
¯
.

We denote by β the parameter vector (βT1 , ..., β
T
m). Now, we will define new estimators

for the population proportions of zi variables. For that, we consider the estimation of the
superpopulation parameter β by the units of the sample s.

3.1 Approach 1: Single frame

When inclusion probabilities in domain ab are known for both frames, and not just for the
frame from which the unit was selected, single-frame methods ([1], [6]), which combine the
observations into a single dataset and adjust the weights in the intersection domain for
multiplicity, can be used. To adjust for multiplicity, the weights are defined as follows for
all units in frame A and in frame B,

d̃k =


dAk if k ∈ sa
(1/dAk + 1/dBk)−1 if k ∈ sab ∪ sba
dBk if k ∈ sb

.

We estimate β by maximizing the π-weighted likelihood ([4], [10]) given by

L(β) =
∑

i=1,...,m

∑
k∈s

d̃k lnµki.

This usually requires numerical procedures, and Fisher scoring or Newton-Raphson often
work rather well. Most statistical packages include a multinomial logit procedure.

Given the estimate β̂ of β, we consider the following auxiliary variable

pki = µ̂ki =
exp(x

¯
T
k β̂i)∑

r=1,...,m exp(x
¯
T
krβ̂r)

. (4)

Since the vector x
¯k

is known for all units of the population U , the values pki are available
∀k ∈ U and we propose to use the values pki to obtain a new estimator for Pi,

P̂MLRSi =
1

N

(∑
k∈U

pki +
∑
k∈s

d̃k(zki − pki)

)
. (5)
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We observe that this estimator takes the same model-assisted form as the MLGREG es-
timator proposed in [7], but here it is adjusted to account for the dual frame sampling
setting.

Another important way to incorporate available auxiliary information is given by cal-
ibration estimation ([2]), that seeks for new weights that are close (in some sense) to the
basic design weights and that, at the same time, match benchmark constraints on auxiliary
information. See [8] for the extension of calibration to the dual frame setting. Here, we
propose a new calibration estimator

P̂MLcalSF i =
1

N

∑
k∈s

w̃kzki,

where w̃k minimizes
∑

k∈sG(w̃k, d̃k) subject to:∑
k∈s

w̃kr
¯ki

=
∑
k∈U

r
¯ki

where the elements of r
¯ki

change according to the available auxiliary information. In par-
ticular,

• if NA, NB Nab are known:

r
¯ki

= (δk(a), δk(ab) + δk(ba), δk(b), pki)

• and if NA, NB are known:

r
¯ki

= (δk(a) + δk(ab) + δk(ba), δk(b) + δk(ba) + δk(ab), pki)

with δk(a), δk(ab), δk(ba) and δk(b) the indicator variables for domains a, ab, ba and b, re-
spectively. This is an extension of the Model calibration approach proposed by [14].

3.2 Approach 2: Dual frame

We estimate the probabilities µki separately in each frame. For each k ∈ A, using data of
sample sA one can estimate µki by

pAki =
exp(x

¯
T
k β̂

A
i )∑

r=1,...,m exp(x
¯
T
krβ̂

A
r )

(6)

where we estimate βA by maximizing L(βA) =
∑

i=1,...,m

∑
k∈sA dAk lnµki.

Similarly we obtain pBki for k ∈ B, and define for each i = 1, ...,m the following regression
estimator:
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P̂MLRDi =
1

N

(∑
a

pAki + η
∑
ab

pAki +
∑
b

pBki + (1− η)
∑
ba

pBki+

+
∑
sA

(zki − pAki)dAk +
∑
sB

(zki − pBki)dBk

)
.

Several calibration estimators can be defined using dual frame approach. Although all
of them are in the form

P̂MLcalDFi =
1

N

∑
k∈s

w?
kzki, (7)

different sets of weights can be obtained considering different distance functions and different
calibration constraints. In particular, let say P̂MLCalDF1i use weights w1?

k such that (we
show only the case Nab unknown for space reason)

min
∑
k∈s

G(w1?
k , dk) s.t.

∑
k∈sa

w1?
k δk(a) +

∑
k∈sab

w1?
k δk(ab) +

∑
k∈sba

w1?
k δk(ba) = NA,

∑
k∈sb

w1?
k δk(b) +

∑
k∈sba

w1?
k δk(ba) +

∑
k∈sab

w1?
k δk(ab) = NB,

and ∑
k∈sA

w1?
k p

A
ki +

∑
k∈sB

w1?
k p

B
ki =

∑
k∈Ua

pAki + η
∑

k∈Uab

pAki + (1− η)
∑

k∈Uba

pBki +
∑
k∈Ub

pBki

where pAki are the estimated probabilities defined in (6) and pBki is its analogous in frame B.
As an alternative, the last single constraint can be replaced by other two, each of them

referring to a frame, as follows∑
k∈sA

w2?
k p

A
ki =

∑
k∈Ua

pAki + η
∑

k∈Uab

pAki∑
k∈sB

w2?
k p

B
ki = (1− η)

∑
k∈Uba

pBki +
∑
k∈Ub

pBki

From the resulting weights we can calculate a new estimator, P̂MLCalDF2i.
Alternatively, another estimator, say P̂MLCalDF3i, can be obtained following a method-

ology quite similar to the one described in section 3.1. In this sense, estimator is calculated
from a set of weights w3?

k verifying that
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min
∑
k∈s

G(w3?
k , d

◦
k) s.t. (8)

∑
k∈sa

w3?
k δk(a) +

∑
k∈sab

w3?
k δk(ab) +

∑
k∈sba

w3?
k δk(ba) = NA,

∑
k∈sb

w3?
k δk(b) +

∑
k∈sba

w3?
k δk(ba) +

∑
k∈sab

w3?
k δk(ab) = NB,

and ∑
k∈s

w3?
k p

?
ki =

∑
k∈U

p?ki,

where probabilities p?ki, k ∈ U , i = 1, . . . ,m are estimated from the whole sample s using

an estimate β̂? of β obtained by maximizing L(β) =
∑

i=1,...,m

∑
k∈s d

◦
k lnµki, where d◦k are

defined in (3).

4 Monte Carlo simulation experiments

For our simulation study we use the hsbdemo data set (http://www.ats.ucla.edu/stat/
data/hsbdemo.dta). The data set contains variables on 200 students. The outcome variable
is prog, program type, a three-level categorical variable whose categories are academic,
general, vocation. The predictor variables are social economic status, ses, a three-level
categorical variable and a mathematical score, math, a continuous variable. We estimate a
multinomial logistic regression model. We create a new data set with 50 copies of predictor
variables ses and math and with the predicted values for the variable prog. The simulated
populations, namely POP1, have, therefore, dimension N = 10000.

Units are randomly assigned to the two frames, A and B, according to three different
scenarios depending on the overlap domain size Nab. We first generate copies the sequence
“a”, “b”, or “ab” to have the required domain sizes in the population and generate N
normal random numbers, εk, k = 1, . . . , N . Then, we sort the data by ε. The first scenario
has a small overlap domain size Nab=1000 and the resulting sizes of the two frames are
NA=6000 and NB=5000.The second and the third scenarios have respectively large and
medium overlap domain size. The resulting frame sizes in the second scenario are given
by NA=6000 and NB=7000 and the overlap domain size is Nab=3000, while for the third
scenario we have NA=8000, NB=7000 and Nab=5000.

Similarly, POP2 is built first by assigning units to the frames and second by fitting
a multinomial logistic regression model separately in each frame (with the same predictor
variables).

Samples from frame A are selected by means of Midzuno sampling, with inclusion
probabilities proportional to variable cid. Samples from frame B are selected by means
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of simple random sampling. For each scenario, we draw a combination of sample sizes for
frame A and frame B, as follows: (nA = 180, nB = 232).

This makes a 3 × 2 design for the simulation study. For each of the 6 settings, we
compute the multinomial logistic regression estimator under single frame (PMLRS) and
dual frame (PMLRD) approach, the multinomial logistic calibration estimators under single
frame (PMLCalSF) and dual frame (PMLCalDF1, PMLCalDF2, PMLCalDF3) approach.

We compute also the Hartley estimator [5], the Pseudo Maximum Likelihood estimator
(PML) when Nab is unknown [11], the single frame estimator (BKA) [1] and [6], the Fuller-
Bunmeister estimator [3] and the Raking Ratio estimator (SFRR) [11] for the purpose of
comparison. The Pseudo Empirical Likelihhod estimator (PEL) [9] and the dual frame
and the single frame calibration estimator (CalDF and CalSF) [8] are also computed using
the auxiliary information on ses and math. When needed (and for comparative purposes)
the value of η has been estimated using η = v(N̂ba)/(v(N̂ab) + v(N̂ba)) for all compared
estimators, where v(N̂ab) is an estimate of the variance of the Horvitz-Thompson estimator
N̂ab for the size of overlap domain, and similarly for v(N̂ba).

For each estimator, we compute the percent relative bias RB% = EMC(Ŷ −Y )/Y ∗100,
the percent relative mean squared error RMSE% = EMC [(Ŷ − Y )2]/Y 2 ∗ 100 for each
category of the main variable prog and the minimum, maximum and mean percent over
categories, based on 1000 simulation runs.

Tables 1 to 2 report results. From these tables we can see that relative biases are
negligible in all cases, as a consequence, efficiency comparisons can be based on variances.
The performance in terms of efficiency of the estimators is essentially driven by the set
of auxiliary variables employed. When no auxiliary information about ses and math is
used, the efficiency is small (SFRR, Hartley, FB, PML). When ses and math are employed
in calibration process (CalSF, PEL, CalDF), the efficiency increases and where ses and
math are also used trough a model, is the most effective as expected (PMLRS, PMLCalSF,
PMLRD, PMLCalDF1, PMLCalDF2, PMLCalDF3). There is not a relevant difference
in efficiency between single frame and dual frame approach, irrespective to the use of a
multinomial logistic estimator or a multinomial calibration estimator. With regard to the
relative efficiency, comparisons do not allow any proposed estimators to emerge among
others and do suggest that all the estimators considered tend to perform well, and better
than using a simple linear regression model (compare with CalSF and CalDF). Furthermore
the proposed estimators have the additional advantage that the estimates of proportions
for each category add to 1.
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Table 1: Relative efficiency (respecto to the BKA estimator) of compared estimator.

POP1 POP2

acad. gen. voc. min max mean acad. gen. voc. min max mean

Medium

PMLRS 348.12 181.25 252.44 181.25 348.12 260.60 285.76 154.12 205.13 154.12 285.76 215.00
PMLCalSF 358.10 180.97 258.85 180.97 358.10 265.97 316.20 154.22 225.59 154.22 316.20 232.00
PMLRD 350.18 187.65 257.22 187.65 350.18 265.01 290.04 206.85 208.62 206.85 290.04 235.17
PMLCalDF1 358.28 185.99 262.45 185.99 358.28 268.90 320.63 208.45 228.48 208.45 320.63 252.52
PMLCalDF2 358.93 186.31 263.52 186.31 358.93 269.58 322.70 206.94 228.85 206.94 322.70 252.83
PMLCalDF3 356.87 181.05 258.60 181.05 356.87 265.50 315.27 154.64 224.88 154.64 315.27 231.59
SFRR 99.63 100.26 99.59 99.59 100.26 99.82 100.57 99.71 101.41 99.71 101.41 100.56
CalSF 149.94 142.21 132.30 132.30 149.94 141.48 179.37 134.31 147.57 134.31 179.37 153.75
Hartley 99.24 97.79 98.61 97.79 99.24 98.54 99.60 97.35 99.81 97.35 99.81 98.92
FB 97.37 97.77 97.89 97.37 97.89 97.67 98.52 97.03 99.70 97.03 99.70 98.41
PML 99.50 99.97 99.60 99.50 99.97 99.69 100.57 99.39 101.49 99.39 101.49 100.48
PEL 217.89 135.87 177.26 135.87 217.89 177.00 233.98 137.14 197.58 137.14 233.98 189.56
CalDF 213.91 134.83 175.14 134.83 213.91 174.62 240.90 138.51 205.54 138.51 240.90 194.98

Small

PMLRS 331.75 163.33 248.08 163.33 331.75 247.72 252.11 157.96 228.84 157.96 252.11 212.97
PMLCalSF 353.77 163.17 265.85 163.17 353.77 260.93 268.97 158.53 248.22 158.53 268.97 225.24
PMLRD 343.94 164.70 257.75 164.70 343.94 255.46 309.54 229.33 225.33 225.33 309.54 254.73
PMLCalDF1 365.90 165.05 274.66 165.05 365.90 268.53 339.40 229.52 244.28 229.52 339.40 271.06
PMLCalDF2 365.15 163.94 275.28 163.94 365.15 268.12 345.97 230.52 249.17 230.52 345.97 275.22
PMLCalDF3 353.76 163.06 265.66 163.06 353.76 260.82 268.72 158.59 248.06 158.59 268.72 225.12
SFRR 99.96 99.90 99.84 99.84 99.96 99.90 100.52 100.01 100.20 100.01 100.52 100.24
CalSF 155.30 137.56 140.60 137.56 155.30 144.48 161.56 148.10 141.66 141.66 161.56 150.44
Hartley 99.76 97.59 98.98 97.59 99.76 98.77 98.48 98.30 99.15 98.30 99.15 98.64
FB 98.10 97.59 98.51 97.59 98.51 98.06 98.62 97.82 98.97 97.82 98.97 98.47
PML 99.81 99.89 99.60 99.60 99.89 99.76 100.50 99.86 100.23 99.86 100.50 100.19
PEL 232.55 147.36 198.25 147.36 232.55 192.72 224.18 165.83 177.18 165.83 224.18 189.06
CalDF 210.50 134.54 179.08 134.54 210.50 174.70 222.13 164.14 174.61 164.14 222.13 186.96

Large

PMLRS 356.73 161.87 257.40 161.87 356.73 258.66 345.31 130.70 263.30 130.70 345.31 246.43
PMLCalSF 375.21 161.38 267.54 161.38 375.21 268.04 384.82 133.27 282.32 133.27 384.82 266.80
PMLRD 362.07 168.39 265.88 168.39 362.07 265.44 318.17 146.83 257.61 146.83 318.17 240.87
PMLCalDF1 381.24 174.49 276.55 174.49 381.24 277.42 307.90 114.90 275.49 114.90 307.90 232.76
PMLCalDF2 376.11 167.22 274.78 167.22 376.11 272.70 353.73 145.56 280.22 145.56 353.73 259.83
PMLCalDF3 371.74 161.23 266.64 161.23 371.74 266.53 379.61 132.47 282.95 132.47 379.61 265.01
SFRR 100.20 99.50 100.31 99.50 100.31 100.00 103.12 103.35 100.42 100.42 103.35 102.29
CalSF 147.60 130.53 138.13 130.53 147.60 138.75 160.52 121.03 129.70 121.03 160.52 137.08
Hartley 98.16 96.01 97.42 96.01 98.16 97.19 94.01 96.85 99.28 94.01 99.28 96.71
FB 99.29 96.17 99.18 96.17 99.29 98.21 101.01 98.18 98.99 98.18 101.01 99.39
PML 99.95 99.11 100.19 99.11 100.19 99.75 102.47 103.34 99.75 99.75 103.34 101.85
PEL 193.48 124.99 173.21 124.99 193.48 163.89 194.09 147.68 169.70 147.68 194.09 170.49
CalDF 192.10 125.72 170.56 125.72 192.10 162.79 189.76 163.55 181.28 163.55 189.76 178.19
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Multinomial logistic estimation in dual frame surveys

Table 2: Relative bias of compared estimator.

POP1 POP2

acad. gen. voc. min max mean acad. gen. voc. min max mean

Medium

BKA 0.06 -0.13 0.31 0.06 0.31 0.16 -0.84 0.06 0.12 0.06 0.84 0.34
PMLRS -0.03 0.48 -0.07 0.03 0.48 0.19 0.04 -0.39 0.03 0.03 0.39 0.15
PMLCalSF -0.07 0.46 0.05 0.05 0.46 0.19 0.02 -0.53 0.13 0.02 0.53 0.23
PMLRD -0.04 1.05 -0.23 0.04 1.05 0.44 -0.01 0.02 0.02 0.01 0.02 0.02
PMLCalDF1 -0.07 1.09 -0.17 0.07 1.09 0.44 0.01 -0.14 0.03 0.01 0.14 0.06
PMLCalDF2 -0.12 1.06 -0.02 0.02 1.06 0.40 -0.04 -0.19 0.16 0.04 0.19 0.13
PMLCalDF3 -0.07 0.44 0.06 0.06 0.44 0.19 0.02 -0.53 0.13 0.02 0.53 0.23
SFRR 0.04 -0.13 0.32 0.04 0.32 0.16 -0.83 0.04 0.17 0.04 0.83 0.35
CalSF 0.02 -0.02 0.05 0.02 0.05 0.03 -0.79 0.21 -0.26 0.21 0.79 0.42
Hartley -1.54 -0.14 0.01 0.01 1.54 0.56 -2.37 0.03 -0.20 0.03 2.37 0.87
FB -1.47 0.03 0.14 0.03 1.47 0.54 -2.25 0.18 -0.01 0.01 2.25 0.82
PML 0.15 -0.13 0.36 0.13 0.36 0.21 -0.80 0.07 0.15 0.07 0.80 0.34
PEL -0.01 -0.01 0.03 0.01 0.03 0.02 -0.84 0.03 0.18 0.03 0.84 0.35
CalDF 0.10 0.06 -0.18 0.06 0.18 0.11 -0.69 0.11 -0.05 0.05 0.69 0.28

Small

BKA -0.33 -0.06 0.26 0.06 0.33 0.21 -0.02 -0.01 0.04 0.01 0.04 0.02
PMLRS -0.06 0.83 -0.11 0.06 0.83 0.33 0.09 0.27 -0.38 0.09 0.38 0.24
PMLCalSF -0.10 0.84 -0.01 0.01 0.84 0.32 0.07 0.20 -0.29 0.07 0.29 0.18
PMLRD -0.07 1.35 -0.24 0.07 1.35 0.55 0.00 1.24 -0.50 0.00 1.24 0.58
PMLCalDF1 -0.12 1.45 -0.15 0.12 1.45 0.57 -0.08 1.57 -0.38 0.08 1.57 0.68
PMLCalDF2 -0.15 1.41 -0.05 0.05 1.41 0.54 -0.05 1.37 -0.39 0.05 1.37 0.61
PMLCalDF3 -0.10 0.86 -0.01 0.01 0.86 0.32 0.06 0.21 -0.29 0.06 0.29 0.19
SFRR -0.34 -0.06 0.26 0.06 0.34 0.22 -0.04 -0.01 0.04 0.01 0.04 0.03
CalSF -0.05 0.04 -0.08 0.04 0.08 0.06 -0.30 0.13 -0.28 0.13 0.30 0.23
Hartley -1.84 -0.12 -0.07 0.07 1.84 0.68 -1.15 -0.05 -0.38 0.05 1.15 0.53
FB -1.68 0.12 0.10 0.10 1.68 0.63 -0.95 0.17 -0.19 0.17 0.95 0.44
PML -0.24 -0.06 0.30 0.06 0.30 0.20 -0.02 0.01 0.06 0.01 0.06 0.03
PEL 0.05 -0.03 0.05 0.03 0.05 0.04 -0.25 0.07 -0.15 0.07 0.25 0.16
CalDF 0.22 0.04 -0.17 0.04 0.22 0.14 -0.01 0.16 -0.48 0.01 0.48 0.22

Large

BKA -0.29 0.13 -0.24 0.13 0.29 0.22 0.04 -0.10 0.26 0.04 0.26 0.13
PMLRS 0.04 0.34 -0.22 0.04 0.34 0.20 -0.12 0.85 0.10 0.10 0.85 0.36
PMLCalSF -0.02 0.29 -0.03 0.02 0.29 0.11 -0.17 0.68 0.27 0.17 0.68 0.37
PMLRD 0.02 0.66 -0.27 0.02 0.66 0.32 -0.11 1.60 -0.16 0.11 1.60 0.62
PMLCalDF1 -0.02 0.46 -0.09 0.02 0.46 0.19 -0.65 7.06 -0.20 0.20 7.06 2.64
PMLCalDF2 -0.08 0.66 0.01 0.01 0.66 0.25 -0.18 1.39 0.09 0.09 1.39 0.56
PMLCalDF3 -0.03 0.36 -0.04 0.03 0.36 0.14 -0.16 0.72 0.24 0.16 0.72 0.38
SFRR -0.31 0.12 -0.22 0.12 0.31 0.22 0.02 -0.09 0.24 0.02 0.24 0.12
CalSF -0.59 0.19 -0.31 0.19 0.59 0.36 0.32 -0.02 -0.04 0.02 0.32 0.13
Hartley -1.95 0.17 -0.54 0.17 1.95 0.89 -2.08 -0.05 -0.12 0.05 2.08 0.75
FB -1.99 0.27 -0.53 0.27 1.99 0.93 -2.01 0.08 -0.14 0.08 2.01 0.74
PML -0.18 0.14 -0.22 0.14 0.22 0.18 0.13 -0.11 0.35 0.11 0.35 0.20
PEL -0.66 0.11 -0.08 0.08 0.66 0.28 0.49 -0.13 0.22 0.13 0.49 0.28
CalDF -0.37 0.17 -0.32 0.17 0.37 0.29 1.19 0.01 -0.36 0.01 1.19 0.52
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